Fortschr Neurol Psychiatr 2013; 81(5): 260-264
DOI: 10.1055/s-0033-1335548
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Die Gehirnentwicklung vor der psychotischen Erstmanifestation und im weiteren Verlauf der Schizophrenie

Brain Development before Onset of the First Psychotic Episode and during Outcome of Schizophrenia
P. Falkai
1   Klinik für Psychiatrie und Psychotherapie, Ludwig-Maximilians-Universität München
,
D. Reich-Erkelenz
1   Klinik für Psychiatrie und Psychotherapie, Ludwig-Maximilians-Universität München
,
B. Malchow
1   Klinik für Psychiatrie und Psychotherapie, Ludwig-Maximilians-Universität München
,
A. Schmitt
1   Klinik für Psychiatrie und Psychotherapie, Ludwig-Maximilians-Universität München
,
K. Majtenyi
2   Neuropathology and Prion Disease Reference Center, Semmelweis University Budapest, Hungary
› Author Affiliations
Further Information

Publication History

Publication Date:
21 May 2013 (online)

Zusammenfassung

Eine umschriebene Assoziation zwischen Copy Number Variations mit der Diagnose Schizophrenie und Autismus, aber nicht bipolarer Störung, unterstützt die Vorstellung, dass die Schizophrenie sowie der Autismus im Kern Hirnentwicklungsstörungen darstellen. Daten an multipel affizierten Familien mit Schizophrenie zeigen, dass hirnstrukturelle Veränderungen wie die des Hippokampus auch bei erstgradigen Angehörigen erkrankter Patienten vorhanden sind, ohne dass diese psychopathologisch auffällig sind. Es ist davon auszugehen, dass es bei der Schizophrenie in fronto-temporalen Regionen Veränderungen gibt, die genetisch bedingt im Sinne einer primären Vulnerabilität früh angelegt werden. Der Übergang dieser Vulnerabilität in ein Prodrom bis zum Vollbild der Erkrankung wird durch relevante Umweltfaktoren getriggert. Den hirnstrukturellen Veränderungen des Hippokampus liegen keine neuronalen Verluste zugrunde. Am ehesten ist von einer Reduzierung des Neuropils und somit einer Störung synaptischer oder, weiter gefasst, regenerativer Mechanismen auszugehen. Hieraus resultiert die Hypothese, dass die Störung dieser regenerativen Mechanismen an den Verlauf der schizophrenen Psychose gekoppelt ist: Je ausgeprägter die Negativsymptomatik, desto deutlicher ist die synaptische oder neuronale Plastizität beeinträchtigt. Abschließend lässt sich anhand erster Daten die Hypothese erheben, dass diese Störung synaptischer/plastischer Prozesse auf eine Beeinträchtigung der epigenetischen Regulation zurückzuführen ist. Dies würde erklären, wie relevante Umweltfaktoren (Schwangerschafts- und Geburtskomplikationen, frühkindlicher Missbrauch oder Cannabismissbrauch) über die Risikogene zu einer Destabilisierung des neuronalen Netzwerks führen, welches auf der Verhaltensebene letztlich die Symptome einer Schizophrenie auslösen kann.

Abstract

A circumscribed association between copy number variations and the diagnosis of schizophrenia or autism but not bipolar disorder supports the notion of schizophrenia and autism principally representing a disturbed brain development. Data of multiply affected families show certain brain structural (e. g. hippocampal) changes to also be present in their first-grade relatives without leading to psychopathological abnormalities. It thus can be concluded that there exist regional fronto-temporal changes in schizophrenia due to genetically early determined primary vulnerability. The transition of this vulnerability into a prodrome to the point of the fully developed disease is triggered by relevant environmental factors. Hippocampal brain structural changes do not base on neuronal loss, for which reason the underlying mechanism might be a reduction of neuropil and thus a disturbance of synaptic processes or even regenerative mechanisms. Thus, disturbed regenerative mechanisms might be linked to the course of schizophrenic psychosis: the more pronounced the negative symptoms, the more evident the impaired synaptic or neuronal plasticity. Based on initial data we speculate the disturbed synaptic/plastic processes to result from an impaired epigenetic regulation. This could explain how relevant environmental factors (pregnancy and birth complications, early childhood abuse or cannabis abuse) via risk genes might lead to a destabilized neuronal network which in the end could trigger schizophrenia symptoms on the behavioral level.

 
  • Literatur

  • 1 Gottesman II, Shields J. A critical review of recent adoption, twin, and family studies of schizophrenia: behavioral genetics perspectives. Schizophr Bull 1976; 2: 360-401
  • 2 Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187-1192
  • 3 Tiwari AK, Zai CC, Muller DJ et al. Genetics in schizophrenia: where are we and what next?. Dialogues in clinical neuroscience 2010; 12: 289-303
  • 4 Stefansson H, Sigurdsson E, Steinthorsdottir V et al. Neuregulin 1 and susceptibility to schizophrenia. American journal of human genetics 2002; 71: 877-892
  • 5 Lennertz L, Rujescu D, Wagner M et al. Novel schizophrenia risk gene TCF4 influences verbal learning and memory functioning in schizophrenia patients. Neuropsychobiology 2011; 63: 131-136
  • 6 Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40-68 image 45
  • 7 Weinberger DR. Schizophrenia and the frontal lobe. Trends in neurosciences 1988; 11: 367-370
  • 8 Merikangas AK, Corvin AP, Gallagher L. Copy-number variants in neurodevelopmental disorders: promises and challenges. Trends in genetics: TIG 2009; 25: 536-544
  • 9 van Amelsvoort T, Daly E, Henry J et al. Brain anatomy in adults with velocardiofacial syndrome with and without schizophrenia: preliminary results of a structural magnetic resonance imaging study. Arch Gen Psychiatry 2004; 61: 1085-1096
  • 10 Schmitt A, Hasan A, Gruber O et al. Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 2011; 261: 150-154
  • 11 Walter E, Mazaika PK, Reiss AL. Insights into brain development from neurogenetic syndromes: evidence from fragile X syndrome, Williams syndrome, Turner syndrome and velocardiofacial syndrome. Neuroscience 2009; 164: 257-271
  • 12 Velakoulis D, Wood SJ, Wong MT et al. Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 2006; 63: 139-149
  • 13 Bogerts B, Meertz E, Schonfeldt-Bausch R. Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 1985; 42: 784-791
  • 14 Bogerts B, Falkai P, Haupts M et al. Post-mortem volume measurements of limbic system and basal ganglia structures in chronic schizophrenics. Initial results from a new brain collection. Schizophr Res 1990; 3: 295-301
  • 15 Falkai P, Bogerts B. Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatry Neurol Sci 1986; 236: 154-161
  • 16 Ebner F, Tepest R, Dani I et al. The hippocampus in families with schizophrenia in relation to obstetric complications. Schizophr Res 2008; 104: 71-78
  • 17 Gruber O, Falkai P, Schneider-Axmann T et al. Neuregulin-1 haplotype HAP(ICE) is associated with lower hippocampal volumes in schizophrenic patients and in non-affected family members. J Psychiatr Res 2008; 43: 1-6
  • 18 Hurlemann R, Jessen F, Wagner M et al. Interrelated neuropsychological and anatomical evidence of hippocampal pathology in the at-risk mental state. Psychol Med 2008; 38: 843-851
  • 19 Hasan A, Wobrock T, Falkai P et al. Hippocampal integrity and neurocognition in first-episode schizophrenia: A multidimensional study. World J Biol Psychiatry 2011;
  • 20 Meisenzahl EM, Koutsouleris N, Bottlender R et al. Structural brain alterations at different stages of schizophrenia: a voxel-based morphometric study. Schizophr Res 2008; 104: 44-60
  • 21 Wood SJ, Velakoulis D, Smith DJ et al. A longitudinal study of hippocampal volume in first episode psychosis and chronic schizophrenia. Schizophr Res 2001; 52: 37-46
  • 22 Ellison-Wright I, Glahn DC, Laird AR et al. The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 2008; 165: 1015-1023
  • 23 Ho BC, Andreasen NC, Ziebell S et al. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry 2011; 68: 128-137
  • 24 Tost H, Braus DF, Hakimi S et al. Acute D2 receptor blockade induces rapid, reversible remodeling in human cortical-striatal circuits. Nat Neurosci 2010; 13: 920-922
  • 25 Schmitt A, Steyskal C, Bernstein HG et al. Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 2009; 117: 395-407
  • 26 Falkai P, Honer WG, David S et al. No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 1999; 25: 48-53
  • 27 Bayer TA, Buslei R, Havas L et al. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 1999; 271: 126-128
  • 28 Honer WG, Falkai P, Bayer TA et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 2002; 12: 349-356
  • 29 Pajonk FG, Wobrock T, Gruber O et al. Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 2010; 67: 133-143
  • 30 Benarroch EE. N-acetylaspartate and N-acetylaspartylglutamate: neurobiology and clinical significance. Neurology 2008; 70: 1353-1357
  • 31 Hu S, Ying Z, Gomez-Pinilla F et al. Exercise can increase small heat shock proteins (sHSP) and pre- and post-synaptic proteins in the hippocampus. Brain Res 2009; 1249: 191-201
  • 32 Vaynman S, Ying Z, Gomez-Pinilla F. Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 2003; 122: 647-657
  • 33 Sananbenesi F, Fischer A. The epigenetic bottleneck of neurodegenerative and psychiatric diseases. Biological chemistry 2009; 390: 1145-1153
  • 34 Costa E, Dong E, Grayson DR et al. Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics: official journal of the DNA Methylation Society 2007; 2: 29-36
  • 35 Dong E, Guidotti A, Grayson DR et al. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci U S A 2007; 104: 4676-4681
  • 36 Akbarian S. The molecular pathology of schizophrenia – focus on histone and DNA modifications. Brain research bulletin 2010; 83: 103-107