Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2013; 45(24): 3332-3340
DOI: 10.1055/s-0033-1338554
DOI: 10.1055/s-0033-1338554
feature article
Synthesis of 1,3-Dehydroadamantanes Possessing Alkyl, Phenyl, and Alkoxy Substituents by Intramolecular Wurtz-Type Coupling Reaction of 1,3-Dibromoadamantanes
Further Information
Publication History
Received: 29 August 2013
Accepted after revision: 10 October 2013
Publication Date:
04 November 2013 (online)
Abstract
A series of highly strained [3.3.1]propellane derivatives, 1,3-dehydroadamantanes (DHAs) possessing alkyl, phenyl, and alkoxy substituents, such as 5-butyl, 5-hexyl, 5-octyl, 5-phenyl, 5-methoxy, 5-butoxy, 5,7-dimethyl, 5-ethyl-7-hexyl, 5,7-dibutyl-, 5-butyl-7-isobutyl, 5-butyl-7-hexyl, 5-butyl-7-phenyl, 5-butyl-7-methoxy, and 5-butoxy-7-butyl, were synthesized in several gram amounts. The 1,3-dibromoadamantanes carrying alkyl, phenyl, and alkoxy substituents were converted into the corresponding DHAs via the intramolecular Wurtz-type coupling reactions with lithium metal in THF in 21–81% yields.
-
References
- 1 Pincock RE, Torupka EJ. J. Am. Chem. Soc. 1969; 91: 4593
- 2 Pincock RE, Schmidt J, Scott WB, Torupka EJ. Can. J. Chem. 1972; 50: 3958
- 3a Fokin AA, Schreiner PR, von Schleyer PR, Gunchenko PA. J. Org. Chem. 1998; 63: 6494
- 3b The strain energies of 1a and [3.3.1]propellane were estimated to be 55.5 and 36.1 kcal·mol–1, which were much higher than those of cyclopropane (27.2 kcal·mol–1) and cyclobutane (26.4 kcal·mol–1).
- 4 Wiberg KB, Walker FH. J. Am. Chem. Soc. 1982; 104: 5239
- 5 Eaton PE, Temme III GH. J. Am. Chem. Soc. 1973; 95: 7508
- 6 Wiberg KB, Bailey WF, Jason ME. J. Org. Chem. 1976; 41: 2711
- 7 Wiberg KB, Lupton EC. Jr, Burgmaier GJ. J. Am. Chem. Soc. 1969; 91: 3372
- 9a Kaszynski P, Michl J. J. Am. Chem. Soc. 1988; 110: 5225
- 9b Friedli AC, Kaszynski P, Michl J. Tetrahedron Lett. 1989; 30: 455
- 10a Schlüter A.-D. Angew. Chem., Int. Ed. Engl. 1988; 27: 296
- 10b Schlüter A.-D. Macromolecules 1988; 21: 1208
- 10c Opitz K, Schlüter A.-D. Angew. Chem., Int. Ed. Engl. 1989; 28: 456
- 11 Ishizone T, Matsuoka S, Sakai S, Harada W, Tajima H. Macromolecules 2004; 37: 7069
- 12 Inomata S, Matsuoka S, Sakai S, Tajima H, Ishizone T. Macromolecules 2012; 45: 4184
- 13 Matsuoka S, Ogiwara N, Ishizone T. J. Am. Chem. Soc. 2006; 128: 8708
- 14 Inomata S, Harada Y, Nakamura Y, Uehara Y, Ishizone T. J. Polym. Sci. Part A: Polym. Chem. 2013; 51: 4111
- 15 Inomata S, Harada Y, Matsuoka S, Ishizone T. Tetrahedron 2013; 69: 3238
- 16 Adcock W, Clark CI. J. Org. Chem. 1993; 58: 7341
- 17 Scott WB, Pincock RE. J. Am. Chem. Soc. 1973; 95: 2040
- 18 Hirao A, Takenaka K, Packrisamy S, Yamaguchi K, Nakahama S. Makromol. Chem. 1985; 186: 1157
- 19 If the removal of LiBr is insufficient in addition to THF, a trace amount of 1-(4-bromobutoxy)adamantane is formed after the addition of AcOH. In this case, nucleophilic reaction of bromide ion takes place with the oxonium ion instead of the acetate ion.
- 20a Jasys VJ, Lombardo F, Appleton TA, Bordner J, Ziliox M, Volkmann RA. J. Am. Chem. Soc. 2000; 122: 466
- 20b Schreiner PR, Fokin AA, Lauenstein O, Okamoto Y, Wakita T, Rinderspacher C, Robinson GH, Vohs JK, Campana CF. J. Am. Chem. Soc. 2002; 124: 13348