Synlett, Inhaltsverzeichnis Synlett 2013; 24(11): 1405-1409DOI: 10.1055/s-0033-1338859 letter © Georg Thieme Verlag Stuttgart · New York Selenium-Doped TiO2 as an Efficient Photocatalyst for the Oxidation of Tetrahydrofuran to γ-Butyrolactone Using Hydrogen Peroxide as Oxidant Patnam Padmalatha Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun-248005, India Fax: +91(135)2660202 eMail: suman@iip.res.in , Praveen K. Khatri Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun-248005, India Fax: +91(135)2660202 eMail: suman@iip.res.in , Suman L. Jain* Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun-248005, India Fax: +91(135)2660202 eMail: suman@iip.res.in › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract Selenium-doped TiO2 has been used for the first time as efficient photocatalyst for the oxidation of tetrahydrofuran by using hydrogen peroxide as oxidant, affording γ-butyrolactone (GBL) in excellent yield with higher selectivity. TiO2-doped with selenium showed greater visible absorption and exhibited superior photocatalytic activity than undoped TiO2. The prepared catalyst was subjected to reflux in Millipore water in order to remove the surface-bound selenium species. After this treatment, the catalyst did not show any leaching and showed efficient recycling with consistent catalytic efficiency. Key words Key wordsphotocatalysis - selenium-doped titania - oxidation - THF Volltext Referenzen References 1a Fujishima A, Rao TN, Tryk DA. J. Photochem. Photobiol., C 2000; 1: 1 1b Fujishima A, Honda K. Nature (London) 1972; 238: 37 1c Leary R, Westwood A. Carbon 2011; 49: 741 1d Vinodgopal K, Wynkoop DE, Kamat PV. Environ. Sci. Technol. 1996; 30: 1660 2 Serpone N. J. Phys. Chem. B 2006; 110: 24287 3 Tachikawa T, Fujitsuka M, Majima T. J. Phys. Chem. C 2007; 111: 5259 4 Thompson T, Yates J. Chem. Rev. 2006; 106: 4428 5 Qiu X, Burda C. Chem. Phys. 2007; 339: 1 6 Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E. Chem. Phys. 2007; 339: 44 7 Rockafellow EM, Fang X, Trewyn BG, Schmidt-Rohr K, Jenks WS. Chem. Mater. 2009; 21: 1187 8 Rockafellow EM, Stewart LK, Jenks WS. Appl. Catal. B 2009; 91: 554 9 Reddy KM, Baruwati B, Jayalakshmi M, Rao MM, Manorama SV. J. Solid State Chem. 2005; 178: 3352 10 Kuznetsov VN, Serpone N. J. Phys. Chem. B 2006; 110: 25203 11 Venkatachalam N, Vinu A, Anandan S, Arabindoo B, Murugesan V. J. Nanosci. Nanotechnol. 2006; 6: 2499 12 Peng F, Cai L, Yu H, Wang H, Yang JJ. Solid State Chem. 2008; 181: 130 13 Mitoraj D, Kisch H. Solid State Phenomena 2010; 162: 45 14 Tojo T, Tachikawa M, Fujitsuka T, Majima J. J. Phys Chem. C 2008; 112: 14948 15 Gurkan YY, Kasapbasi E, Cinar Z. Chem. Eng. J. 2013; 214: 34 16 Baba T, Kameta K, Nishiyama S, Tsuruya S, Masai M. Bull. Chem. Soc. Jpn. 1990; 63: 255 17 Metsger L, Bittner S. Tetrahedron 2000; 56: 1905 18 Kajigaeshi S, Nakagawa T, Nagasaki N, Yamasaki H, Fujisaki S. Bull. Chem. Soc. Jpn. 1986; 59: 747 19 Sakaguchi S, Kikuchi D, Ishii Y. Bull. Chem. Soc. Jpn. 1997; 10: 2561 20 Smith AB, Scarborough RM. Synth. Commun. 1980; 10: 205 21 Ogata Y, Tomizawa K, Ikeda T. J. Org. Chem. 1980; 45: 1320 22 Nwaukwa SO, Keehn PM. Tetrahedron Lett. 1982; 23: 35 23 Sasidharan M, Bhaumik A. J. Mol. Catal. A: Chem. 2011; 338: 105 24 Zhang S, Chen X, Tian Y, Jin B, Yang J. J. Cryst. Growth 2007; 304: 42 25 Rockafellow EM, Haywood JM, Witte T, Houk RS, Jenks WS. Langmuir 2010; 26: 19052 26 Štengl V, Bakardjieva S, Bludská J. J. Mater Sci. 2011; 46: 3523 27 Badrinayaaan S, Mandale AB, Gunjikar VG, Sinha AB. P. J. Mater. Sci. 1986; 21: 3333