Synthesis 2013; 45(13): 1815-1824
DOI: 10.1055/s-0033-1338860
paper
© Georg Thieme Verlag Stuttgart · New York

Lead Diversification through a Prins-Driven Macrocyclization Strategy: Application to C13-Diversified Bryostatin Analogues

Paul A. Wender*
a   Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305-5080, USA   Fax: +1(650)7250259   Email: wenderp@stanford.edu
,
Kelvin L. Billingsley
b   Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305-5105, USA
› Author Affiliations
Further Information

Publication History

Received: 19 April 2013

Accepted: 06 May 2013

Publication Date:
28 May 2013 (online)


To a friend and scholar in recognition of his towering contributions to education and to mechanistic and synthetic chemistry

Abstract

The design, synthesis, and biological evaluation of a novel class of C13-diversified bryostatin analogues are described. An innovative and general strategy based on a Prins macrocyclization-nucleophilic trapping cascade was used to achieve late-stage diversification. In vitro analysis of selected library members revealed that modification at the C13 position of the bryostatin scaffold can be used as a diversification handle to regulate biological activity.

 
  • References

  • 1 Pettit GR, Herald CL, Doubek DL, Herald DL, Arnold E, Clardy J. J. Am. Chem. Soc. 1982; 104: 6846

    • For overviews of the chemistry and biology of the bryostatins, see:
    • 2a Wender PA, Baryza JL, Hilinski MK, Horan JC, Kan C, Verma VA In Drug Discovery Research: New Frontiers in the Post-Genomic Era . Huang Z. Wiley; Hoboken: 2007. Chap. 6, 127
    • 2b Hale KJ, Hummersone S, Manaviazar MG, Frigerio M. Nat. Prod. Rep. 2002; 19: 413
    • 2c Hale KJ, Manaviazar S. Chem. Asian J. 2010; 5: 704
  • 3 For current information, see the US National Institutes of Health Clinical Trials database at http://clinicaltrials.gov.
    • 4a Spitaler M, Utz I, Hilbe W, Hofmann J, Grunicke HH. Biochem. Pharmacol. 1998; 56: 861
    • 4b Alkatib AM, Smith MR, Kamanda WS, Pettit GR, Hamdan M, Mohamed AN, Chelladurai B, Mohammad RM. Clin. Cancer Res. 1998; 4: 1305
    • 5a Oz HS, Hughes WT, Rehg JE, Thomas EK. Microb. Pathog. 2000; 29: 187
    • 5b Scheid C, Prendiville J, Jayson G, Crowther D, Fox B, Pettit GR, Stern PL. Cancer Immunol. Immunother. 1994; 39: 223
    • 6a Sun M.-K, Alkon DL. Eur. J. Pharmacol. 2005; 512: 43
    • 6b Alkon DL, Epstein H, Kuzirian A, Bennett MC, Nelson TJ. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 16432
    • 6c Kuzirian AM, Epstein HT, Gagliardi CJ, Nelson TJ, Sakakibara M, Taylor C, Scioletti AB, Alkon DL. Biol. Bull. 2006; 210: 201
    • 7a Sun M.-K, Hongpaisan J, Nelson TJ, Alkon DL. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 13620
    • 7b Sun M.-K, Hongpaisan J, Alkon DL. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 14676
    • 8a Mehla R, Bivalkar-Mehla S, Zhang R, Handy I, Albrecht H, Giri S, Nagarkatti P, Nagarkatti M, Chauhan A. PLoS One 2010; 5: e11160

    • For a recent report on the use of synthetically accessible bryostatin analogues to induce latent HIV reservoirs, see:
    • 8b DeChristopher BA, Loy BA, Marsden MD, Schrier AJ, Zack JA, Wender PA. Nature Chem. 2012; 4: 705
    • 9a Rosse C, Linch M, Kermorgant S, Cameron AJ. M, Boeckeler K, Parker PJ. Nat. Rev. Mol. Cell Biol. 2010; 11: 103
    • 9b Newton AC. Chem. Rev. 2001; 101: 2353
    • 10a Protein Kinase C . Dekker LV. 2nd ed. Springer; New York: 2004
    • 10b Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. Science (Washington D. C.) 2002; 298: 1912
  • 11 Stone JC, Stang SL, Zheng Y, Dower NA, Brenner SE, Baryza JL, Wender PA. J. Med. Chem. 2004; 47: 6638
  • 12 Stang SL, Lopez-Campistrous A, Song X, Dower NA, Blumberg PM, Wender PA, Stone JC. Exp. Hematol. 2009; 37: 122
  • 13 Keck GE, Poudel YB, Cummins TJ, Rubra A, Covel JA. J. Am. Chem. Soc. 2011; 133: 744
  • 14 Evans DA, Carter PH, Carreira EM, Charette AB, Prunet JA, Lautens M. J. Am. Chem. Soc. 1999; 121: 7540
  • 15 Ohmori K, Ogawa Y, Obitsu T, Ishikawa Y, Nishiyama S, Yamamura S. Angew. Chem. Int. Ed. 2000; 39: 2290
    • 16a Kageyama M, Tamura T, Nantz MH, Roberts JC, Somfai P, Whritenour DC, Masamune S. J. Am. Chem. Soc. 1990; 112: 7407
    • 16b Lu Y, Woo SK, Krische MJ. J. Am. Chem. Soc. 2011; 133: 13876
  • 17 Wender PA, Schrier AJ. J. Am. Chem. Soc. 2011; 133: 9228
  • 18 Trost BM, Dong G. Nature (London) 2008; 456: 485
  • 19 Wender PA, Cribbs CM, Koehler KF, Sharkey NA, Herald CL, Komano Y, Pettit GR, Blumberg PM. Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 7197
  • 20 Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
  • 21 Wender PA, Loy BA, Schrier AJ. Isr. J. Chem. 2011; 51: 453
  • 22 Wender PA, De Brabander JK, Harran PG, Jimenez J.-M, Koehler MF. T, Lippa B, Park C.-M, Siedenbiedel C, Pettit GR. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 6624
  • 23 Wender PA, Baryza JL, Bennett CE, Bi FC, Brenner SE, Clarke MO, Horan JC, Kan C, Lacote E, Lippa B, Nell PG, Turner TM. J. Am. Chem. Soc. 2002; 124: 13648
  • 24 Wender PA, Baryza JL, Brenner SE, DeChristopher BA, Loy BA, Schrier AJ, Verma VA. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 6721
    • 25a Wender PA, DeChristopher BA, Schrier AJ. J. Am. Chem. Soc. 2008; 131: 6658
    • 25b For a seminal study on the intermolecular silyl-terminated Prins process, see: Marko IE, Bayston DJ. Tetrahedron Lett. 1993; 34: 6595 ; and references cited therein
    • 25c Keck has reported applications of the intermolecular process to bryostatin analogues (see ref. 13 and references cited therein).

      For recent examples of the application of silyl-terminated Prins cyclizations, see:
    • 26a Ogawa Y, Painter PP, Tantillo DJ, Wender PA. J. Org. Chem. 2013; 78: 104
    • 26b Gesinski MR, Rychnovsky SD. J. Am. Chem. Soc. 2011; 133: 9727
    • 26c Zhu K, Panek JS. Org. Lett. 2011; 13: 4652
    • 26d Ghosh AK, Cheng X. Org. Lett. 2011; 13: 4108
    • 26e Wrona IE, Gozman A, Taldone T, Chiosis G, Panek JS. J. Org. Chem. 2010; 75: 2820
  • 27 Olier C, Kaafarani M, Gastaldi S, Bertrand MP. Tetrahedron 2010; 66: 413
  • 28 Bahnck KB, Rychnovsky SD. J. Am. Chem. Soc. 2008; 130: 13177
    • 29a Custar DW, Zabawa TP, Scheidt KA. J. Am. Chem. Soc. 2008; 130: 804
    • 29b Woo SK, Kwon MS, Lee E. Angew. Chem. Int. Ed. 2008; 47: 3242
  • 30 Woo SK, Lee E. J. Am. Chem. Soc. 2010; 132: 4564

    • For a recent review, see:
    • 31a Crane AE, Scheidt KA. Angew. Chem. Int. Ed. 2010; 49: 8316

    • For previous work, see:
    • 31b Gesinski MR, Tadpetch K, Rychnovsky SD. Org. Lett. 2009; 11: 5342
    • 31c Custar DE, Zabawa TP, Hines J, Crews CM, Scheidt KA. J. Am. Chem. Soc. 2009; 131: 12406
    • 31d Yadav JS, Krishana GG, Kumar SN. Tetrahedron 2010; 66: 480
  • 32 Wender PA, Mayweg AV. W, VanDeusen CL. Org. Lett. 2003; 5: 277
  • 33 Miranda PO, Carballo RM, Martín VS, Padrón JI. Org. Lett. 2009; 11: 357
    • 34a Kishi Y, Nagura H, Inagi S, Fuchigami T. Chem. Commun. (Cambridge) 2008; 3876
    • 34b Kishi Y, Nagura H, Inagi S, Fuchigami T. Eur. J. Org. Chem. 2009; 103
    • 35a Albizati KF, Perron F. J. Org. Chem. 1987; 52: 4128
    • 35b Epstein OL, Rovis T. J. Am. Chem. Soc. 2006; 128: 16480
  • 36 Reddy UC, Bondalapati S, Saikia AK. J. Org. Chem. 2009; 74: 2605
  • 37 Wender PA, Verma VA. Org. Lett. 2006; 8: 1893