Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(11): 1443-1447
DOI: 10.1055/s-0033-1338939
DOI: 10.1055/s-0033-1338939
letter
Synthesis of Aryl Thiocyanates via Copper-Catalyzed Aerobic Oxidative Cross-Coupling between Arylboronic Acids and KSCN
Further Information
Publication History
Received: 16 March 2013
Accepted after revision: 17 April 2013
Publication Date:
15 May 2013 (online)
Abstract
A new protocol for the preparation of aryl thiocyanates by the cross-coupling reaction of arylboronic acids with KSCN salt is described. The coupling reaction was catalyzed by 20 mol% of copper acetate in the presence of 2.0 equivalents 4-methylpyridine serving both as ligand and base under 0.2 MPa of molecular oxygen. A variety of arylboronic acids, including those with substituents at ortho position, were suitable under the reaction conditions.
Key words
aryl thiocyanates - arylboronic acids - potassium thiocyanate - copper acetate - oxidative cross-coupling reactionSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Rao KS, Wu TS. Tetrahedron 2012; 68: 7735
- 1b Qiao JX, Lam PY. S. Synthesis 2011; 829
- 2a Chan DM. T, Monaco KL, Wang RP, Winters MP. Tetrahedron Lett. 1998; 39: 2933
- 2b Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941
- 3a Novak P, Lishchynskyi A, Grushin VV. Angew. Chem. Int. Ed. 2012; 51: 7767
- 3b Matsuda N, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 3642
- 3c Li JH, Benard S, Neuville L, Zhu JP. Org. Lett. 2012; 14: 5980
- 3d Inamoto K, Nozawa K, Kadokawa J, Kondo Y. Tetrahedron 2012; 68: 7794
- 3e Kianmehr E, Baghersad MH. Adv. Synth. Catal. 2011; 353: 2599
- 3f Zhang GY, Zhang LL, Hu ML, Cheng JA. Adv. Synth. Catal. 2011; 353: 291
- 3g Li Y, Gao LX, Han FS. Chem. Eur. J. 2010; 16: 7969
- 3h Zhang LL, Zhang GY, Zhang ML, Cheng JA. J. Org. Chem. 2010; 75: 7472
- 3i Rao HH, Fu H, Jiang YY, Zhao YF. Angew. Chem. Int. Ed. 2009; 48: 1114
- 3j He C, Chen C, Cheng J, Liu C, Liu W, Li Q, Lei AW. Angew. Chem. Int. Ed. 2008; 47: 6414
- 4a Xu HJ, Zhao YQ, Feng T, Feng YS. J. Org. Chem. 2012; 77: 2878
- 4b Herradura PS, Pendola KA, Guy RK. Org. Lett. 2000; 2: 2019
- 5 Prokopcova H, Kappe CO. J. Org. Chem. 2007; 72: 4440
- 6 Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2002; 4: 4309
- 7a Luo PS, Wang F, Li JH, Tang RY, Zhong P. Synthesis 2009; 921
- 7b Taniguchi N. J. Org. Chem. 2007; 72: 1241
- 7c Taniguchi N. Synlett 2006; 1351
- 8 Zhang CP, Vicic DA. Chem. Asian J. 2012; 7: 1756
- 9a Erian AW, Sherif SM. Tetrahedron 1999; 55: 7957
- 9b Zheng WX, Ariafard A, Lin ZY. Organometallics 2008; 27: 246
- 9c Laufer SA, Liedtke AJ. Tetrahedron Lett. 2006; 47: 7199
- 9d Demko ZP, Sharpless KB. Org. Lett. 2001; 3: 4091
- 9e Billard T, Langlois BR, Medebielle M. Tetrahedron Lett. 2001; 42: 3463
- 9f Toste FD, Laronde F, Still IW. J. Tetrahedron Lett. 1995; 36: 2949
- 10a Yasman Y, Edrada RA, Wray V, Proksch P. J. Nat. Prod. 2003; 66: 1512
- 10b Elhalem E, Bailey BN, Docampo R, Ujvary I, Szajnman SH, Rodriguez JB. J. Med. Chem. 2002; 45: 3984
- 10c Alaimo RJ, Pelosi SS, Hatton CJ, Gray JE. J. Med. Chem. 1974; 17: 775
- 11a Mokhtari B, Azadi R, Mardani E. Tetrahedron Lett. 2012; 53: 491
- 11b Reddy BV. S, Reddy SM. S, Madan C. Tetrahedron Lett. 2011; 52: 1432
- 11c Bisogno FR, Cuetos A, Lavandera I, Gotor V. Green Chem. 2009; 11: 452
- 11d Iranpoor N, Firouzabadi H, Nowrouzi N. Tetrahedron 2006; 62: 5498 ; and the references cited in these papers
- 12a Guy RG In The Chemistry of Functional Groups: The Chemistry of Cyanates and Their Thio Derivatives. Patai S. Wiley; New York: 1977. Part 2 Chap. 18
- 12b Pilgram K, Phillips DD. J. Org. Chem. 1965; 30: 2388
- 13a Zarchi MA. K, Ebrahimi N. Phosphorus, Sulfur Silicon Relat. Elem. 2012; 187: 1226
- 13b Beletskaya IP, Sigeev AS, Peregudov AS, Petrovskii PV. Mendeleev Commun. 2006; 250
- 13c Barbero M, Degani I, Diulgheroff N, Dughera S, Fochi R. Synthesis 2001; 585
- 14a Khazaei A, Zolfigol MA, Safaiee M, Mokhlesi M, Donyadari E, Shiri M, Kruger HG. Catal. Commun. 2012; 26: 34
- 14b Khazaei A, Zolfigol MA, Mokhlesi M, Panah FD, Sajjadifar S. Helv. Chim. Acta 2012; 95: 106
- 14c Iranpoor N, Firouzabadi H, Khalili D, Shahin R. Tetrahedron Lett. 2010; 51: 3508
- 14d Bhalerao DS, Akamanchi KG. Synlett 2007; 2952
- 14e Toste FD, Destefano V, Still IW. J. Synth. Commun. 1995; 25: 1277
- 15a Wang YF, Zhou Y, Wang JR, Liu L, Guo QX. Chin. Chem. Lett. 2006; 17: 1283
- 15b Suzuki H, Abe H. Synth. Commun. 1996; 26: 3413
- 15c Clark JH, Jones CW, Duke CV. A, Miller JM. J. Chem. Soc., Chem. Commun. 1989; 81
- 16 Takagi K, Takachi H, Sasaki K. J. Org. Chem. 1995; 60: 6552
- 17a Still IW. J, Watson ID. G. Synth. Commun. 2001; 31: 1355
- 17b Kagabu S, Sawahara K, Maehara M, Ichihashi S, Saito K. Chem. Pharm. Bull. 1991; 39: 784
- 17c Harpp DH, Friedlander BT, Smith RA. Synthesis 1979; 181
- 18 General Procedure for the Preparation of Aryl Thiocyanates To a Teflon-lined stainless steel autoclave (250 mL) was added aryl boronic acid (10 mmol), KSCN (1.07 g, 11 mmol), Cu(OAc)2 (0.36 g, 2 mmol), 3 Å MS (2.5 g), and MeCN (25 mL). The autoclave was closed and charged with oxygen to 0.2 MPa. The autoclave was then set into the preheated (80 °C) oil bath. After the reaction proceeded within 12 h, the autoclave was cooled to r.t. and carefully depressurized. The mixture in the autoclave was filtered to remove the catalyst and 3 Å MS and washed with MeCN. The combined filtrate was concentrated under reduced pressure. The residual was purified by flash chromatography through a silica column using PE–EtOAc as the eluent under the protection of N2 to afford the desired products. The products were characterized by IR, 1H NMR, 13C NMR, and HRMS. Phenyl Thiocyanate (2a) Yellowish oil. IR (neat): ν = 2173 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.43–7.56 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 110.5, 124.4, 129.5, 130.06, 130.23. HRMS (EI): m/z calcd for C7H5NS [M]+: 135.0143; found: 135.0140. CAS Reg. No. 5285-87-0. 2-Methoxyphenyl Thiocyanate (2c) Yellow oil. IR (neat): ν = 2153 cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.94 (s, 3 H), 6.94–7.59 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 56.2, 110.5, 111.4, 113.1, 122.1, 129.9, 130.5, 156.5. HRMS (EI): m/z calcd for C8H7NOS [M]+: 165.0248; found: 165.0252. CAS Reg. No. 14372-66-8. 4-Fluorophenyl Thiocyanate (2i) Colorless oil. IR (neat): ν = 2153 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.15–7.59 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 110.6, 117.6 (d, J = 22.7 Hz), 119.2 (d, J = 3.3 Hz), 133.2 (d, J = 8.9 Hz), 163.6 (d, J = 250.1 Hz). HRMS (EI): m/z calcd for C7H4NSF [M]+: 153.0048; found: 153.0048. CAS Reg. No. 2924-02-9. 2-Bromophenyl Thiocyanate (2k) Pink oil. IR (neat): ν = 2161 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.25–7.74 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 109.6, 121.8, 127.1, 129.07, 129.44, 130.1, 133.6. HRMS (EI): m/z calcd for C7H4NSBr [M]+: 212.9248; found: 212.9238. CAS Reg. No. 55757-32-9. 4-(Methoxycarbonyl)phenyl Thiocyanate (2n) White soild; mp 62.7 °C. IR (KBr): ν = 2153, 1708 cm–1. 1H NMR (500 MHz, CDCl3): δ = 3.96 (s, 3 H), 7.57–8.12 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 52.6, 109.1, 128.5, 130.47, 130.93, 131.21, 165.8. HRMS (EI): m/z calcd for C9H7NO2S [M]+: 193.0198; found: 193.0203. CAS Reg. No. 1879-22-7.
For recent reviews, see:
For recent examples, see:
For a review, see:
For selected papers, see: