Synthesis 2013; 45(18): 2545-2550
DOI: 10.1055/s-0033-1339377
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient and Convenient Procedure for the One-Pot Synthesis of α-Aminophosphonates from Aryl Azides under Solvent-Free Conditions

Ya-Qin Yu*
Key Laboratory for Water Environment and Resources, Tianjin Normal University, Tianjin 300387, P. R. of China   Fax: +86(22)23766256   Email: yuyaqin@mail.tjnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 23 April 2013

Accepted after revision: 18 June 2013

Publication Date:
30 July 2013 (online)


Abstract

A novel and simple approach to the multicomponent one-pot reaction of aldehydes, diethyl phosphite, and azides to form α-aminophosphonates under solvent-free conditions at room temperature has been developed. In the presence of iodine and iron, aryl azides were, for the first time, used as substrates for the synthesis of α-aminophosphonates. The reactions were completed within 5 minutes to 12 hours and afforded the corresponding products in good yields.

Supporting Information

 
  • References

    • 1a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 1b Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA. Acc. Chem. Res. 1996; 29: 123
    • 1c Ugi I. Pure Appl. Chem. 2001; 73: 187
    • 1d Toure BB, Hall DG. Chem. Rev. 2009; 109: 4439
    • 1e Sunderhaus JD, Martin SF. Chem. Eur. J. 2009; 15: 1300
  • 2 Zhu J, Bienaymé H. Multi-Component Reactions . Wiley-VCH; Weinheim: 2005
  • 3 Peyman A, Budt KH, Paning JS, Stowasser B, Ruppert D. Tetrahedron Lett. 1992; 33: 4549
  • 4 Alonso E, Solis A, Del Pozo C. Synlett 2000; 698
  • 5 Kafarski P, Lejczak B. Phosphorus, Sulfur Silicon Relat. Elem. 1991; 63: 193
  • 6 Allerberger F, Klare IJ. J. Antimicrob. Chemother. 1999; 43: 211
  • 7 Maier L. Phosphorus, Sulfur Silicon Relat. Elem. 1990; 47: 43
  • 8 Maier L, Sporri H. Phosphorus, Sulfur Silicon Relat. Elem. 1991; 61: 69
  • 9 Emsley J, Hall D. Chemistry of Phosphorus . Harper & Row; London: 1976: 494
  • 10 Chung SK, Kang DH. Tetrahedron: Asymmetry 1996; 7: 21
    • 11a Qian C, Huang T. J. Org. Chem. 1998; 63: 4125
    • 11b Ranu BC, Hajra A, Jana U. Org. Lett. 1999; 1: 1141
    • 11c Manabe K, Kobayashi S. Chem. Commun. 2000; 669
    • 11d Chandrasekhar S, Prakash SJ, Jagadeshwar V, Narsihmulu C. Tetrahedron Lett. 2001; 42: 5561
    • 11e Heydari A, Zarei M, Alijanianzadeh R, Tavakol H. Tetrahedron Lett. 2001; 42: 3629
    • 11f Akiyama T, Sanada M, Fuchibe K. Synlett 2003; 1463
    • 11g Xu F, Luo Y, Deng M, Shen Q. Eur. J. Org. Chem. 2003; 4728
    • 11h Paraskar AS, Sudalai A. ARKIVOK 2006; (x): 183
    • 11i Bhagat S, Chakraborti AK. J. Org. Chem. 2007; 72: 1263
    • 11j Bhagat S, Chakraborti AK. J. Org. Chem. 2008; 73: 6029
    • 11k Rezaei Z, Firouzabadi H, Iranpoor N, Ghaderi A, Jafari MR, Jafari AA, Zare HR. Eur. J. Med. Chem. 2009; 44: 4266
    • 11l Thirumurugan P, Nandakumar A, Priya NS, Muralidaran D, Perumal PT. Tetrahedron Lett. 2010; 51: 5708
    • 11m Gallardo-Macias R, Nakayama K. Synthesis 2010; 57
    • 11n Tang J, Wang L, Wang W, Zhang L, Wu S, Mao D. J. Fluorine Chem. 2011; 132: 102
    • 11o Disale ST, Kale SR, Kahandal SS, Srinivasan TG, Jayaram RV. Tetrahedron Lett. 2012; 53: 2277
    • 11p Fang D, Jiao C, Ni C. Heteroat. Chem. 2010; 21: 546
    • 11q Hou J.-T, Gao J.-W, Zhang Z.-H. Appl. Organomet. Chem. 2011; 25: 47
    • 11r Jiao C.-J, Shen Z.-X, Kong L.-C, Zhang Y.-W. Chem. Res. 2007; 18: 27
    • 11s Zhang G, Zi Y, Xia Y, Fei Y, Wang Y. J. Huaibei Norm. Univ. Nat. Sci. Ed. 2011; 32: 38
    • 12a Yadav JS, Subba Reddy BV, Madan C. Synlett 2001; 1131
    • 12b Kaboudin B, Nazari R. Tetrahedron Lett. 2001; 42: 8211
    • 12c Kabachnik MM, Zobnina EV, Beletskaya IP. Synlett 2005; 1393
    • 12d Xia M, Lu YD. Ultrason. Sonochem. 2007; 14: 235
    • 12e Zahouily M, Elmakssoudi A, Mezdar A, Rayadh A, Sebti S. Catal. Commun. 2007; 8: 225
    • 12f Ambica, Kumar S, Taneja SC, Hundal MS, Kapoor KK. Tetrahedron Lett. 2008; 49: 2208
    • 12g Bhattacharya AK, Rana KC. Tetrahedron Lett. 2008; 49: 2598
    • 12h Dar B, Singh A, Sahu A, Patidar P, Chakraborty A, Singh B, Sharma M. Tetrahedron Lett. 2012; 53: 5497
    • 12i Olszewski TK, Boduszek B. Tetrahedron 2010; 66: 8661
    • 12j Ordóñez M, Sayago FJ, Cativiela C. Tetrahedron 2012; 68: 6369
    • 12k Boduszek B, Olszewski TK, Goldeman W, Grzegolec K, Blazejewska P. Tetrahedron 2012; 68: 1223
    • 12l Olszewski TK, Boduszek B. Synthesis 2011; 437
    • 12m Tibhe GD, Bedolla-Medrano M, Cativiela C, Ordóñez M. Synlett 2012; 23: 1931
    • 12n Michalska J, Boduszek B, Olszewski TK. Heteroat. Chem. 2011; 22: 617
    • 13a Kassaee MZ, Movahedi F, Masrouri H. Synlett 2009; 1326
    • 13b Vinu A, Kalita P, Balasubramanian VV, Oveisi H, Selvan T, Mano A, Chari MA, Subba Reddy BV. Tetrahedron Lett. 2009; 50: 7132
    • 13c Subba Reddy BV, Siva Krishna A, Ganesh AV, Narayana Kumar GG. K. S. Tetrahedron Lett. 2011; 52: 1359
    • 13d Kidwai M, Bhardwaj S, Mishra NK, Jain A, Kumar A, Mozzumdar S. Catal. Sci. Technol. 2011; 1: 426
    • 13e Patil AB, Patil DS, Bhanage BM. Mater. Lett. 2012; 86: 50
  • 14 Yu Y.-Q, Wang Z.-L. J. Chin. Chem. Soc. 2013; 60: 288
  • 15 Zhu Z, Espenson JH. J. Am. Chem. Soc. 1996; 118: 9901
  • 16 Lukanov LK, Venkov AP, Mollov NM. Synthesis 1985; 971
    • 18a Roman G. Tetrahedron 1995; 51: 10627
    • 18b Cherkasov RA, Galkina IV. Russ. Chem. Rev. 1998; 67: 857
    • 18c Yamanaka M, Hirata TJ. J. Org. Chem. 2009; 74: 3266
    • 18d Shi FQ, Song BA. Org. Biomol. Chem. 2009; 7: 1292
    • 18e Akiyama T, Morita H, Bachu P, Mori K, Yamanaka M, Hirata T. Tetrahedron 2009; 65: 4950
    • 18f Matveeva ED, Zefirov NS. Dokl. Chem. 2008; 420: 137
  • 19 Ranu BC, Sarkar A, Chakraborty R. J. Org. Chem. 1994; 59: 4114