Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(15): 1921-1926
DOI: 10.1055/s-0033-1339489
DOI: 10.1055/s-0033-1339489
letter
Diversity-Oriented Approach to Novel Spirocyclics via Enyne Metathesis, Diels–Alder Reaction, and a [2+2+2] Cycloaddition as Key Steps
Further Information
Publication History
Received: 20 March 2013
Accepted after revision: 09 July 2013
Publication Date:
14 August 2013 (online)
This paper is dedicated to the memory of Professor A. Srikrishna, Department of Organic Chemistry, Indian Institute of Science, Bangalore, India.
Abstract
A simple protocol for the synthesis of indane-based spirocyclics has been developed via enyne metathesis, Diels–Alder reaction, and a [2+2+2] cycloaddition as key steps starting from indane-1,3-dione. The key diene building block was assembled by enyne metathesis. In this sequence, rongalite is used as a green reagent to prepare the sultine intermediate, which is a useful precursor to generate the transient diene.
Keywords
spirocyclic compounds - [2+2+2]-cycloaddition reaction - rongalite - enyne metathesis - Diels–Alder reactionSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Kotha S, Brahmachary E. Bioorg Med. Chem. Lett. 1997; 7: 2719
- 1b Hong BC, Sarshar S. Org. Prep. Proced. Int. 1999; 31: 1
- 1c Kotha S, Brahmachary E. J. Org. Chem. 2000; 65: 1359
- 1d Silva LF. Jr. Tetrahedron 2002; 58: 9137
- 1e Ferraz HM. C, Aguilar AM, Silva LF. Jr, Craveiro MV. Quim. Nova 2005; 28: 703
- 1f Hansen DB, Joullie MM. Chem. Soc. Rev. 2005; 34: 408
- 1g Kuck D. Chem. Rev. 2006; 106: 4885
- 1h Evdokimov NM, Slambrouck SV, Heffeter P, Tu L, Calve BL, Lamorel-Theys D, Hooten C, Uglinskii PY, Rogelj S, Kiss R, Steelant WF. A, Berger W, Yang JJ, Bologa CG, Kornienko A, Magedov IV. J. Med. Chem. 2011; 54: 2012
- 2a Fessner WD, Prinzbach H, Rihs G. Tetrahedron Lett. 1983; 24: 5857
- 2b Rama RaoA. V, Singh AK, Venkateswara Rao B, Reddy M. Tetrahedron Lett. 1993; 34: 2665
- 2c Kita Y, Higuchi K, Yoshida Y, Lio K, Kitagaki S, Ueda K, Shuji A, Fujioka H. J. Am. Chem. Soc. 2001; 123: 3214
- 3 Hudlicky T, Reed JW. The Way of Synthesis . Wiley-VCH; Weinheim: 2007: 98
- 4a Kelly TR, Ohashi N. J. Am. Chem. Soc. 1986; 108: 7100
- 4b Mehta G, Subrahmanyam D. Tetrahedron 1987; 28: 479
- 4c Kita Y, Higuchi K, Yoshida Y, Lio K, Kitagaki S, Shuji A, Fujioka H. Angew. Chem. Int. Ed. 1999; 38: 683
- 7 Fitjer L, Klages U, Wehle D, Giersig M, Schormann N, Cleeg W, Stephensen DS, Binsch G. Tetrahedron 1988; 46: 416
- 8a Sannigrahi M. Tetrahedron 1999; 55: 9007
- 8b Halt DJ, Barker WD, Jenkins PR, Panda J, Ghosh S. J. Org. Chem. 2000; 65: 482
- 8c Kotha S. Acc. Chem. Res. 2003; 36: 342
- 8d Kotha S, Mandal K. Tetrahedron Lett. 2004; 45: 1391
- 8e Kotha S, Deb AC, Chattopadhyay S. Lett. Org. Chem. 2006; 3: 128
- 8f Kotha S, Deb AC, Lahiri K, Manivannan E. Synthesis 2009; 165
- 8g Kotha S, Dipak MK, Mobin S. Tetrahedron 2011; 67: 2543
- 9a Naik SN, Pandey B, Ayyangar NR. Synth. Commun. 1988; 633
- 9b Sakata Y, Goto S, Tatemitsu H, Misumi S. J. Am. Chem. Soc. 1989; 111: 8979
- 9c Norris DJ, Corrigan JF, Sun Y, Taylor NJ, Collins S. Can. J. Chem. 1993; 71: 1029
- 10a Trost BM, Shi Y. J. Am. Chem. Soc. 1991; 113: 701
- 10b Evans PA, Brandt TA. Tetrahedron Lett. 1996; 37: 1367
- 11a Bach RD, Klix RC. Tetrahedron Lett. 1986; 27: 1983
- 11b Kuroda C, Hirono H. Tetrahedron Lett. 1994; 35: 6895
- 11c Kuroda C, Hirono H. Chem. Lett. 2000; 962
- 12 Clive DL. J, Tao Y, Boddy CN, Kleiner G. J. Am. Chem. Soc. 1994; 116: 11275
- 13a Holt DJ, Barker WD, Jenkins PR, Davies DL, Garratt S, Fawcett J, Russell DR, Ghosh S. Angew. Chem. Int. Ed. 1998; 37: 3298
- 13b Kotha S, Manivannan E, Sreenivasachary N, Ganesh T, Deb AC. Synlett 1999; 1618
- 14a Giessert AJ, Diver ST. Chem. Rev. 2004; 104: 1317
- 14b Maifeld SV, Lee D. Chem. Eur. J. 2005; 11: 6118
- 14c Mori M. Adv. Synth. Catal. 2007; 349: 121
- 14d Kotha S, Meshram M, Tiwari A. Chem. Soc. Rev. 2009; 38: 2065
- 14e Kotha S, Mandal K. Chem. Asian J. 2009; 4: 354
- 15 House TN, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
- 16a Kotha S, Mohanraja K, Durani S. Chem. Commun. 2000; 1909
- 16b Saito S, Yamamoto Y. Chem. Rev. 2000; 100: 2901
- 16c Kotha S, Sreenivasacharry N. Bioorg. Med. Chem. Lett. 2000; 10: 1413
- 16d Kotha S, Manivannan E. J. Chem. Soc., Perkin Trans. 1 2001; 2543
- 16e Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 4741
- 17 Fürstner A, Langemann K. J. Org. Chem. 1996; 61: 3942
- 18a Fürstner A, Langemann K. J. Am. Chem. Soc. 1997; 119: 9130
- 18b Buschmann N, Ruckert NA, Blechert S. J. Org. Chem. 2002; 67: 4325
- 18c Davis FA, Yang BJ. J. Am. Chem. Soc. 2005; 127: 8398
- 19a Mori M, Sakakibara N, Kinoshita A. J. Org. Chem. 1998; 63: 6082
- 19b Kitamura T, Mori M. Org. Lett. 2001; 3: 1161
- 20 Preparation of 9 The enyne 12 (140 mg, 0.63 mmol) in dry CH2Cl2 (20 mL) was degassed with nitrogen for 10 min, G-II catalyst (39 mg, 7.5 mol%) and Ti(Oi-Pr)4 (23 mg, 20 mol%) were added, and the reaction vessel was kept under ethylene pressure (balloon pressure). The reaction mixture was stirred at r.t. for 16 h. After completion of the reaction (TLC monitoring), the solvent was concentrated, and the crude product was purified by silica gel column chromatography using EtOAc–PE (3:93) to give the white solid compound 9 (67 mg, 48%); mp 123–124 °C; Rf = 0.41 (silica gel, 20% EtOAc–PE). 1H NMR (400 MHz, CDCl3): δ = 2.85–2.87 (m, 4 H), 5.03 (d, J = 17.52 Hz, 1 H), 5.12 (d, J = 10.72 Hz, 1 H), 5.72–5.73 (br, 1 H), 6.54–6.62 (m, 1 H), 7.86–7.88 (m, 2 H), 8.01–8.03 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 39.70, 41.56, 57.77, 115.51, 123.78, 127.58, 132.34, 135.96, 140.68, 141.76, 203.50. IR (KBr): 1597, 1742, 2854, 2923, 3011 cm–1. HRMS (ESI, Q-ToF): m/z calcd for C15H13O2 [M + H]+: 225.0916; found: 225.0912. General Procedure for the Diels–Alder Reaction of 9 and Subsequent Aromatization To a solution of diene building block 9 in toluene (20 mL) was added dienophile (1.5 equiv), and the reaction mixture was heated at 110–120 °C for 24–36 h. Then, the solvent was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography by using EtOAc–PE (40:60) to afford the Diels–Alder adduct. Later, aromatization of the Diels–Alder adduct was carried out with 10 equiv activated MnO2 in 1,4-dioxane (25 mL) at reflux temperature for 20–24 h. The solvent was then removed at reduced pressure, and the crude product was purified by column chromatography using EtOAc–PE (40:60) to afford aromatized products. Compound 13 Yellow solid; mp 171–173 °C; Rf = 0.50 (silica gel, 40% EtOAc–PE). 1H NMR (400 MHz, CDCl3): δ = 3.47 (s, 2 H), 3.97 (s, 2 H), 7.64–7.68 (m, 3 H), 7.90–7.94 (m, 2 H), 8.05–8.09 (m, 4 H), 8.36 (d, J = 7.88 Hz, 1 H), 8.82 (s, 1 H), 8.72 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 39.37, 43.47, 59.29, 124.02, 128.35, 129.47, 129.53, 129.68, 129.80, 130.27, 130.33, 130.62, 134.58, 135.27, 135.34, 136.31, 141.72, 143.20, 149.91, 183.06, 184.37, 202.68. IR (KBr): 1706, 1739, 2846, 2920, 3055 cm–1. HRMS (ESI, Q-ToF): m/z calcd for C29H17O4 [M + H]+: 429.1127; found: 429.1138. General Procedure for [2+2+2] Cycloaddition A solution of compound 6 (500 mg, 2.25 mmol) and 15 (968 mg, 11.25 mmol) in dry EtOH (50 mL) was degassed with nitrogen for 15 min, afterwards Wilkinson’s catalyst (62 mg, 3.0 mol%) and Ti(Oi-Pr)4 (103 mg, 25 mol%) were added, and the reaction mixture was heated at 75–80 °C for 24 h. After completion of the reaction (TLC monitoring), the solvent was concentrated at reduced pressure, and the crude product was purified by silica gel column chromatography using EtOAc–PE (20:80) to give the white solid compound 25 (70 mg, 7%) and continued elution with EtOAc–PE (60:40) gave a white solid 14 (320 mg, 46%) Compound 14 Mp 112–114 °C; Rf = 0.32 (silica gel, 40% EtOAc–PE). 1H NMR (400 MHz, CDCl3): δ = 3.29 (s, 4 H), 4.69 (s, 4 H), 7.27 (s, 2 H), 7.95–8.03 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 41.30, 60.34, 63.15, 124.62, 125.20, 137.42, 139.65, 141.52, 142.88, 204.50. IR (KBr): 1598, 1744, 2987, 3054, 3304 3692 cm–1. HRMS (ESI, Q-ToF): m/z calcd for C19H16O4Na [M + Na]+: 331.0946; found: 331.0933. Compound 25 Mp 187–190 °C; Rf = 0.60 (silica gel, 40% EtOAc–PE). 1H NMR (400 MHz, CDCl3): δ = 1.74–1.75 (br, 1 H), 2.73–2.74 (br, 2 H), 3.07 (s, 2 H), 3.08 (s, 4 H), 6.78–6.80 (m, 3 H), 7.73–7.75 (m, 2 H), 7.80–7.84 (m, 4 H), 7.92–7.94 (m, 2 H). 13C NMR (100 MHz, CDCl3) δ = 24.00, 40.30, 40.52, 58.85, 58.93, 71.65, 78.48, 123.06, 123.77, 123.99, 125.73, 129.00, 134.00, 135.96, 136.03, 139.26, 140.77, 141.52 142.77, 202.36, 202.92. IR (KBr): 1708, 1738, 2160, 2929, 3054 cm–1. HRMS (ESI, Q-ToF): m/z calcd for C30H21O4 [M + H]+: 445.1440; found: 445.1425.
- 21a Segura JL, Martin N. Chem. Rev. 1999; 99: 3199
- 21b Kotha S, Ganesh T, Ghosh AK. Bioorg. Med. Chem. Lett. 2000; 10: 1755
- 21c Chi C.-C, Pia I.-F, Chung W.-S. Tetrahedron 2004; 60: 10869
- 21d Kotha S, Ghosh AK. Tetrahedron 2004; 60: 10833
- 21e Kotha S, Khedkhar P, Ghosh AK. Eur. J. Org. Chem. 2005; 3581
- 21f Takano Y, Herranz MA, Kareev IE, Strauss SH, Boltalina OV, Akasaka T, Martin N. J. Org. Chem. 2009; 74: 6902
- 21g Kotha S, Chavan AS. J. Org. Chem. 2010; 75: 4319
- 22 Clement RA. J. Org. Chem. 1960; 25: 724
- 23a Kotha S, Mandal K, Tiwari A, Mobin SM. Chem. Eur. J. 2006; 12: 8024
- 23b Kotha S, Lahri K. Eur. J. Org. Chem. 2007; 1221
- 23c Kotha S, Khedkar P. Eur. J. Org. Chem. 2009; 730
- 23d Kotha S, Misra S, Krishna NG, Nagaraju D. Heterocycles 2010; 80: 847
- 23e Kotha S, Vittal S. Synlett 2011; 2329
- 23f Kotha S, Misra S, Venu S. Eur. J. Org. Chem. 2012; 4052
- 23g Kotha S, Wagule GT. J. Org. Chem. 2012; 77: 6314
- 24 Kotha S, Misra S, Halder S. Tetrahedron 2008; 64: 10775