Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2013; 45(24): 3392-3398
DOI: 10.1055/s-0033-1339917
DOI: 10.1055/s-0033-1339917
paper
A New [2+2+1] Heterocyclization for the Synthesis of 2,3,5-Trisubstituted Thiophenes under Microwave Irradiation
Further Information
Publication History
Received: 10 August 2013
Accepted after revision: 16 September 2013
Publication Date:
08 October 2013 (online)
Abstract
A new three-component strategy for the efficient synthesis of 2,3,5-trisubstituted thiophene derivatives through a [2+2+1] heterocyclization between 3-(2-aryl-2-oxoethylidene)-2-oxindoles and α-thiocyanato ketones under microwave irradiation is described. The bond-forming efficiency, accessibility, and generality of this synthesis make it highly valuable to assemble thiophene scaffolds.
Key words
heterocyclization - substituted thiophene - three-component reactions - α-thiocyanato ketone - 3-(2-aryl-2-oxoethylidene)-2-oxindoleSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.
- Supporting Information
-
References
- 1a Medower C, Wen L, Johnson WW. Chem. Res. Toxicol. 2008; 21: 1570
- 1b Romagnoli R, Baraldi PG, Salvador MK, Preti D, Tabrizi MA, Bassetto M, Brancale A, Hamel E, Castagliuolo I, Bortolozzi R, Basso G, Viola G. J. Med. Chem. 2013; 56: 2606
- 2 Pinkerton AB, Lee TT, Hoffman TZ, Wang Y, Kahraman M, Cook TG, Severance D, Gahman TC, Noble SA, Shiau AK, Davis RL. Bioorg. Med. Chem. Lett. 2007; 17: 3562
- 3a Gueney S, Becerik I, Kadirgan F. Bull. Electrochem. 2004; 20: 157
- 3b Ng SC, Fu P, Yu W.-L, Chan HS. O, Tan KL. Synth. Met. 1997; 87: 119
- 4 Obydennov KL, Klimareva EL, Kosterina MF, Slepukhin PA, Morzherin YYu. Tetrahedron Lett. 2013; 54: 4876
- 5a Mishra A, Ma C.-Q, Bauerle P. Chem. Rev. 2009; 109: 1141
- 5b Perepichka IF, Perepichka DF. Handbook of Thiophene-based Materials: Applications in Organic Electronics and Photonics. Wiley VCH; Weinheim: 2009
- 6a Thompson BC, Fréchet JM. J. Angew. Chem. Int. Ed. 2008; 47: 58
- 6b Roncali J. Chem. Rev. 1992; 92: 711
- 6c Osaka I, McCullough RD. Acc. Chem. Res. 2008; 41: 1202
- 6d Marsella MJ, Swager TM. J. Am. Chem. Soc. 1993; 115: 12214
- 7a Murphy AR, Fréchet JM. J. Chem. Rev. 2007; 107: 1066
- 7b Katz HE, Bao Z, Gilat SL. Acc. Chem. Res. 2001; 34: 359
- 7c Ramakrishna G, Bhaskar A, Bauerle P, Goodson III T. J. Phys. Chem. A 2008; 112: 2018
- 8a Wong WW. H, Ma C.-Q, Pisula W, Yan C, Feng X, Jones DJ, Müllen K, Janssen RA. J, Bäuerle P, Holmes AB. Chem. Mater. 2009; 22: 457
- 8b Zhang F, Wu D, Xu Y, Feng X. J. Mater. Chem. 2011; 21: 17590
- 8c Thomas KR. J, Hsu Y.-C, Lin JT, Lee K.-M, Ho K.-C, Lai C.-H, Cheng Y.-M, Chou P.-T. Chem. Mater. 2008; 20: 1830
- 8d Loewe RS, Khersonsky SM, McCullough RD. Adv. Mater. (Weinheim, Ger.) 1999; 11: 250
- 8e Krebs FC. Polymer Photovoltaics: A Practical Approach. SPIE; Bellingham: 2008
- 9a Wang S, Kiersnowski A, Pisula W, Mullen K. J. Am. Chem. Soc. 2012; 134: 4015
- 9b Ong BS, Wu Y, Li Y, Liu P, Pan H. Chem. Eur. J. 2008; 14: 4766
- 10 Gewald K, Schinke E, Böttcher H. Chem. Ber. 1966; 99: 94
- 11a Hinsberg O. Ber. Dtsch. Chem. Ges. 1910; 43: 901
- 11b Wynberg H, Zwanenburg DJ. J. Org. Chem. 1964; 29: 1919
- 11c Wynberg H, Kooreman HJ. J. Am. Chem. Soc. 1965; 87: 1739
- 11d Birch A, Crombie DA. Chem. Ind. (London) 1971; 177
- 12a Moghaddam FM, Zali-Boinee H. Tetrahedron Lett. 2003; 44: 6253
- 12b Mohan C, Kumar V, Mahajan MP. Tetrahedron Lett. 2004; 45: 6075
- 12c Majumdar KC, Ghosh M, Jana M, Saha D. Tetrahedron Lett. 2002; 43: 2111
- 12d Zali-Boeini H, Ghani M. Synthesis 2013; 45: 913
- 13 Moghaddam FM, Zali Boinee H. Tetrahedron 2004; 60: 6085
- 14a Gabriele B, Mancuso R, Salerno G, Larock RC. J. Org. Chem. 2012; 77: 7640
- 14b Gabriele B, Mancuso R, Veltri L, Maltese V, Salerno G. J. Org. Chem. 2012; 77: 9905
- 15 Ravindran G, Paul N, Muthusubramanian S, Perumal S. J. Sulfur Chem. 2008; 29: 575
- 16 Teiber M, Müller TJ. J. Chem. Commun. 2012; 48: 2080
- 17a Mishra P, Maurya HK, Kumar B, Tandon VK, Ramc VJ. Tetrahedron Lett. 2012; 53: 1056
- 17b Reddy CR, Valleti RR, Reddy MD. J. Org. Chem. 2013; 78: 6495
- 17c Robertson FJ, Wu J. J. Am. Chem. Soc. 2012; 134: 2775
- 17d Gabriele B, Salerno G, Fazio A. Org. Lett. 2000; 2: 351
- 17e Fang G, Li J, Wang Y, Gou M, Liu Q, Li X, Bi X. Org. Lett. 2013; 15: 4126
- 18a Jiang B, Rajale T, Walter W, Tu S.-J, Li G. Chem. Asian J. 2010; 5: 2318
- 18b Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
- 18c Isambert N, del Mar Sanchez Duque M, Plaquevent JC, Genisson Y, Rodriguez J, Constantieux T. Chem. Soc. Rev. 2011; 40: 1347
- 18d Estevez V, Villacampa M, Menendez JC. Chem. Soc. Rev. 2010; 39: 4402
- 18e Ganem B. Acc. Chem. Res. 2009; 42: 463
- 18f Li G, Wei HX, Kim SH, Carducci MD. Angew. Chem. Int. Ed. 2001; 40: 4277
- 19a Fan W, Ye Q, Xu H.-W, Jiang B, Wang S.-L, Tu S.-J. Org. Lett. 2013; 15: 2258
- 19b Jiang B, Wang X, Xu H.-W, Tu M.-S, Tu S.-J, Li G. Org. Lett. 2013; 15: 1540
- 19c Li Y, Fan W, Xu H.-W, Jiang B, Wang S.-L, Tu S.-J. Org. Biomol. Chem. 2013; 11: 2417
- 19d Tu X.-C, Fan W, Jiang B, Wang S.-L, Tu S.-J. Tetrahedron 2013; 69: 6100
- 20a Bisogno FR, Cuetos A. Green Chem. 2009; 11: 452
- 20b El-Din AS. Sulfur Lett. 2003; 26: 35
- 20c Wu F.-Y, Li Y, Feng H, Wu Q, Jiang B, Shi F, Tu S.-J. Synthesis 2011; 2459
- 20d Gouda MA. Synth. Commun. 2013; 43: 2547
- 21 Single-crystal growth was carried out in co-solvent of EtOH and DMF at r.t. Crystal data for 3i : C25H16Cl2O2S, crystal dimension 0.30 × 0.26 × 0.12 mm, Triclinic, space group P 1, a = 8.4815(7) Å, b = 11.1246(11) Å, c = 11.7946(9) Å, α = 105.568(2)°, β = 92.2080(10)°, γ = 101.557(2)°, V = 1045.26(16) Å3, Mr = 451.34, Z = 2, λ = 0.71073 Å, μ (MoKα) = 0.431 mm–1, F(000) = 464, R 1 = 0.0544, wR 2 = 0.1256.
For selected examples see: