Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(2): 201-204
DOI: 10.1055/s-0033-1340108
DOI: 10.1055/s-0033-1340108
letter
Brønsted Acid Catalyzed Amination of 1,3-Dicarbonyl Compounds by Iminoiodanes
Further Information
Publication History
Received: 24 September 2013
Accepted after revision: 08 October 2013
Publication Date:
19 November 2013 (online)
Abstract
A synthetic method to aminate 1,3-dicarbonyl compounds with PhI=NTs using Brønsted acid catalysis is described herein. The method was shown to be applicable to β-keto esters and phosphonates as well as 1,3-diones, providing the corresponding α,α-acyl amino acid derivatives in moderate to excellent yields.
Key words
α,α-acyl amino acid derivatives - iminoiodanes - amination - Brønsted acid catalysis - 1,3-dicarbonyl compoundsSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a So SM, Kim H, Mui L, Chin J. Eur. J. Org. Chem. 2012; 229
- 1b Perdih A, Sollner Dolenc M. Curr. Org. Chem. 2011; 15: 3750
- 1c Kudzin ZH, Kudzin MH, Drabowicz J, Stevens CV. Curr. Org. Chem. 2011; 15: 2015
- 1d Naydenova E, Todorov P, Troev K. Amino Acids 2010; 38: 23
- 2a Pandey AK, Naduthambi D, Thomas KM, Zondlo NJ. J. Am. Chem. Soc. 2013; 135: 4333
- 2b Brasile G, Mauri L, Sonnino S, Compostella F, Ronchetti F. Amino Acids 2013; 44: 435
- 2c Ton TM. U, Himawan F, Chang JW. W, Chan PW. H. Chem. Eur. J. 2012; 18: 12020
- 2d Weber M, Frey W, Peters R. Adv. Synth. Catal. 2012; 354: 1443
- 2e Jiang C, Covell DJ, Stepan AF, Plummer MS, White MC. Org. Lett. 2012; 14: 1386
- 2f Yu L, Liu S.-S, Cui J, Hou X.-S, Zhang C. Org. Lett. 2012; 14: 832
- 2g Tosatti P, Campbell AJ, House D, Nelson A, Marsden SP. J. Org. Chem. 2011; 76: 5495
- 2h Tsubogo T, Kano Y, Ikemoto K, Yamashita Y, Kobayashi S. Tetrahedron: Asymmetry 2010; 21: 1221
- 2i Hartmann CE, Baumann T, Bächle M, Bräse S. Tetrahedron: Asymmetry 2010; 21: 1341
- 2j Scott WL, Zhou Z, Zajdel P, Pawłowski M, O’Donnell MJ. Molecules 2010; 15: 4961
- 2k Baumann T, Bächle M, Bräse S. Org. Lett. 2006; 8: 3797
- 3a Dequirez G, Pons V, Dauban P. Angew. Chem. Int. Ed. 2012; 51: 7384
- 3b Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
- 3c Collet F, Lescot C, Dauban P. Chem. Soc. Rev. 2011; 40: 1926
- 3d Chang JW. W, Ton TM. U, Chan PW. H. Chem. Rec. 2011; 11: 331
- 3e Collet F, Dodd RH, Dauban P. Chem. Commun. 2009; 5061
- 3f Díaz-Requejo MM, Pérez PJ. Chem. Rev. 2008; 108: 3379
- 3g Davies HM. L, Manning JR. Nature (London) 2008; 451: 417
- 3h Davies HM. L. Angew. Chem. Int. Ed. 2006; 45: 6422
- 3i Müller P, Fruit C. Chem. Rev. 2003; 103: 2905
- 4a Wang J, Frings M, Bolm C. Angew. Chem. Int. Ed. 2013; 52: 8661
- 4b Gava R, Biffis A, Tubaro C, Zaccheria F, Ravasio N. Catal. Commun. 2013; 40: 63
- 4c Jin L.-M, Xu X, Lu H, Cui X, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2013; 52: 5309
- 4d Beltrán Á, Lescot C, Díaz-Requejo MM, Pérez PJ, Dauban P. Tetrahedron 2013; 69: 4488
- 4e Maestre L, Sameera WM. C, Díaz-Requejo MM, Maseras F, Pérez PJ. J. Am. Chem. Soc. 2012; 135: 1338
- 4f Yoshimura A, Nemykin VN, Zhdankin VV. Chem. Eur. J. 2011; 17: 10538
- 4g Liu Y, Che C.-M. Chem. Eur. J. 2010; 16: 10494
- 4h Nakanishi M, Salit A.-F, Bolm C. Adv. Synth. Catal. 2008; 350: 1835
- 4i Anada M, Tanaka M, Washio T, Yamawaki M, Abe T, Hashimoto S. Org. Lett. 2007; 9: 4559
- 4j Fructos MR, Trofimenko S, Díaz-Requejo MM, Pérez PJ. J. Am. Chem. Soc. 2006; 128: 11784
- 5a Ton TM. U, Tejo C, Tiong DL. Y, Chan PW. H. J. Am. Chem. Soc. 2012; 134: 7344
- 5b Ton TM. U, Tejo C, Chang JW. W, Chan PW. H. J. Org. Chem. 2011; 76: 4894
- 5c Chang JW. W, Ton TM. U, Tania S, Taylor PC, Chan PW. H. Chem. Commun. 2010; 46: 922
- 5d Chang JW. W, Ton TM. U, Zhang Z, Xu Y, Chan PW. H. Tetrahedron Lett. 2009; 50: 161
- 5e Chang JW. W, Chan PW. H. Angew. Chem. Int. Ed. 2008; 47: 1138
- 6a Kiyokawa K, Kosaka T, Minakata S. Org. Lett. 2013; 15: 4858
- 6b Souto JA, Martínez C, Velilla I, Muñiz K. Angew. Chem. Int. Ed. 2013; 52: 1324
- 6c Ochiai M, Yamane S, Hoque MM, Saito M, Miyamoto K. Chem. Commun. 2012; 48: 5280
- 6d Takeda Y, Hayakawa J, Yano K, Minakata S. Chem. Lett. 2012; 41: 1672
- 6e Ochiai M, Miyamoto T, Kaneaki K, Hayashi S, Nakanishi W. Science 2011; 332: 448
- 6f Kowalczyk R, Edmunds AJ. F, Hall RG, Bolm C. Org. Lett. 2011; 13: 768
- 6g Zhang D.-H, Wei Y, Shi M. Eur. J. Org. Chem. 2011; 4940
- 6h Karabal PU, Chouthaiwale PV, Shaikh TM, Suryavanshi G, Sudalai A. Tetrahedron Lett. 2010; 51: 6460
- 6i Fang C, Qian W, Bao W. Synlett 2008; 2529
- 6j Li J, Chan PW. H, Che C.-M. Org. Lett. 2005; 7: 5801
- 6k Lim B.-W, Ahn K.-H. Synth. Commun. 1996; 26: 3407
- 7 General Procedure To a degassed mixture of PhI=NTs (0.6 mmol, 224 mg) and powdered 4 Å MS (240 mg) was added CH2Cl2 (1 mL). The reaction was cooled to 0 °C, and a solution of TFA (0.05 mmol, 3.83 μL) in CH2Cl2 (1 mL) was added. The 1,3-dicarbonyl compound was added, and the reaction was monitored by TLC analysis. Upon completion, the reaction mixture was filtered, washed with EtOAc (40 mL), concentrated under reduced pressure, and purified by flash chromatography [n-hexane–EtOAc (4:1) as eluent] to furnish the title compound.
- 8 Representative Experimental Data Ethyl 2-(4-Methylphenylsulfonamido)-3-oxo-3-phenylpropanoate (2a) Reaction time = 1.5 h; yield 86%; 0.162 g; white solid. 1H NMR (400 MHz, CDCl3): δ = 7.98 (d, J = 7.4 Hz, 2 H), 7.73 (d, J = 8.3 Hz, 2 H), 7.62 (t, J = 7.4 Hz, 1 H), 7.47 (t, J = 7.7 Hz, 2 H), 7.24 (d, J = 8.1 Hz, 2 H), 6.00 (d, J = 8.9 Hz, 1 H), 5.58 (d, J = 8.9 Hz, 1 H), 3.97 (q, J = 7.1 Hz, 2 H), 2.38 (s, 3 H), 1.04 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 190.2, 165.9, 144.1, 144.0, 136.6, 134.7, 129.8, 129.5, 128.9, 127.4, 62.6, 60.9, 21.6, 13.8. Ethyl 3-(4-Bromophenyl)-2-(4-methylphenyl-sulfonamido)-3-oxopropanoate (2h) Reaction time = 1.5 h; yield 60%; 0.114 g; white solid. 1H NMR (400 MHz, CDCl3): δ = 7.86 (d, J = 7.2 Hz, 2 H), 7.72 (d, J = 8.3 Hz, 2 H), 7.62 (d, J = 8.7 Hz, 2 H), 7.25 (d, J = 8.2 Hz, 2 H), 5.96 (d, J = 8.7 Hz, 1 H), 5.52 (d, J = 8.7 Hz, 1 H), 4.02–3.93 (m, 2 H), 2.39 (s, 3 H), 1.05 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 189.6, 165.9, 144.2, 136.5, 132.3, 130.9, 130.2, 129.8, 127.4, 62.9, 60.9, 21.6, 13.8. N-(2,4-Dioxopentan-3-yl)-4-methylbenzenesulfonamide (2s) Reaction time = 2 h; yield 62%; 0.0840 g; yellow solid. 1H NMR (300 MHz, CDCl3): δ = 16.3 (s, 1 H), 7.84 (s, 1 H), 7.71 (d, J = 8.1 Hz, 2 H), 7.32 (d, J = 8.1 Hz, 2 H), 6.16 (s, 1 H), 5.16 (s, 1 H), 2.44 (s, 3 H), 1.87 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 194.1, 144.3, 136.6, 130.1, 127.4, 110.1, 22.1, 21.6.
- 9a Arnett EM, Maroldo SG, Schilling SL, Harrelson JA. J. Am. Chem. Soc. 1984; 106: 6759
- 9b Olmstead WN, Bordwell FG. J. Org. Chem. 1980; 45: 3299
- 10a Moriarty RM. J. Org. Chem. 2005; 70: 2893
- 10b Ochiai M, Suefuji T, Miyamoto K, Shiro M. Org. Lett. 2005; 7: 2893
- 11a Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
- 11b Hammett LP. J. Am. Chem. Soc. 1937; 59: 96
- 12 Kwong H.-L, Lee W.-S. Tetrahedron: Asymmetry 2000; 11: 2299
Selected recent reviews:
Selected recent examples:
Selected general reviews on transition-metal-mediated imido/nitrene reactions:
Selected recent examples on transition-metal-mediated imido/nitrene reactions:
For selected recent examples from our group, see ref. 2c and:
For selected recent examples on transition-metal-free reactions with nitrenoid precursors, see:
Refer to ref. 2f and: