Synlett 2014; 25(2): 239-242
DOI: 10.1055/s-0033-1340282
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Tertiary Allylboronates from Vinylboronates

Brian A. Ondrusek
a   Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, USA   Fax: +1(850)6648281   Email: mcquade@chem.fsu.edu
,
Jin Kyoon Park
b   Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
,
D. Tyler McQuade*
a   Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, USA   Fax: +1(850)6648281   Email: mcquade@chem.fsu.edu
› Author Affiliations
Further Information

Publication History

Received: 02 September 2013

Accepted after revision: 14 October 2013

Publication Date:
04 December 2013 (online)


Abstract

Allylic boronates are versatile intermediates in organic synthesis. Herein, we present an ‘ate-mediated allylic substitution’ (AMAS) approach to allylic boronates. Bifunctional vinylboroate/ allylic acetate esters react with Grignard reagents to form tertiary ­allylic boronates via an AMAS reaction. We demonstrate that the method tolerates a wide range of substrates and Grignard reagents.

Supporting Information

 
  • References and Notes


    • For recent reviews on boron chemistry, see:
    • 1a Contemporary Boron Chemistry . Davidson M, Hughes AK, Marder TB, Wade K. RSC; Cambridge: 2000
    • 1b Boronic Acids . Hall DG. Wiley-VCH; Weinhein: 2005
    • 1c Crudden CM. Chem. Commun. 2009; 45: 6704
    • 1d Jiao J, Nishihara Y. J. Organomet. Chem. 2012; 721-722: 3
    • 1e Cid J, Gulyas H, Carbo JJ, Fernandez E. Chem. Soc. Rev. 2012; 41: 3558
    • 2a Hall DG. Pure Appl. Chem. 2008; 80: 913
    • 2b Carosi L, Hall DG. Can. J. Chem. 2009; 87: 650
    • 2c Guiry PJ. ChemCatChem 2009; 1: 233
    • 2d Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 2e Wu H, Radomkit S, O’Brien J, Hoveyda A. J. Am. Chem. Soc. 2012; 134: 8277
    • 3a Hoffmann RW, Landmann B. Chem. Ber. 1986; 119: 2013
    • 3b Sato M, Yamamoto Y, Hara S, Suzuki A. Tetrahedron Lett. 1993; 34: 7071
    • 3c Schlapbach A, Hoffmann RW. Eur. J. Org. Chem. 2001; 323
    • 3d Lombardo M, Morganti S, Tozzi M, Trombini C. Eur. J. Org. Chem. 2002; 2823
    • 3e Pietruszka J, Schöne N. Angew. Chem. Int. Ed. 2003; 42: 5638
    • 3f Han J.-L, Chen M, Roush WR. Org. Lett. 2013; 14: 3028
    • 3g Nuhant P, Roush WR. J. Am. Chem. Soc. 2013; 135: 5340
    • 3h Chen M, Roush WR. J. Am. Chem. Soc. 2013; 135: 9512
    • 3i Yang Y, Buchwald SL. J. Am. Chem. Soc. 2013; 135: 10642

      For recent general reviews on homologation chemistry, see:
    • 4a Matteson DS. J. Organomet. Chem. 1999; 581: 51
    • 4b Aggarwal VK, Fang GY, Ginesta X, Howells DM, Zaja M. Pure Appl. Chem. 2006; 78: 215
    • 4c Thomas SP, French RM, Jheengut V, Aggarwal VK. Chem. Rec. 2009; 9: 24
    • 5a Matteson DS, Liedtke JD. J. Org. Chem. 1963; 28: 1924
    • 5b Tufariello JJ, Lee LT. C, Wojtkowski P. J. Am. Chem. Soc. 1967; 89: 6804
    • 5c Matteson DS, Majumdar D. J. Am. Chem. Soc. 1980; 102: 7588
    • 5d Matteson DS, Hurst GD. Organometallics 1986; 5: 1465
    • 5e Brown HC, Singh SM, Rangaishenvi MV. J. Org. Chem. 1986; 51: 3150
    • 5f Aggarwal VK, Harvey JN, Robiette R. Angew. Chem. Int. Ed. 2005; 44: 5468

      For asymmetric examples, see:
    • 6a Matteson DS, Ray R. J. Am. Chem. Soc. 1980; 102: 7590
    • 6b Matteson DS, Ray R, Rocks RR, Tsai DJ. Organometallics 1983; 2: 1536
    • 6c Matteson DS, Sadhu KM, Peterson ML. J. Am. Chem. Soc. 1986; 108: 810
    • 6d Matteson DS. Acc. Chem. Res. 1988; 21: 294
    • 6e Matteson DS. Chem. Rev. 1989; 89: 1535
    • 6f Matteson DS, Michnick TJ. Organometallics 1990; 9: 3171
    • 6g Matteson DS, Man H.-W. J. Org. Chem. 1994; 59: 5734
    • 6h Aggarwal VK, Fang GY, Schmidt AT. J. Am. Chem. Soc. 2005; 127: 1642
    • 6i Fang GY, Wallner OA, Blasio ND, Ginesta X, Harvey JN, Aggarwal VK. J. Am. Chem. Soc. 2007; 129: 14632
    • 6j Dutheuil G, Webster MP, Worthington PA, Aggarwal VK. Angew. Chem. Int. Ed. 2009; 48: 6317
    • 6k Schmidt F, Keller F, Vedrenne E, Aggarwal VK. Angew. Chem. Int. Ed. 2009; 48: 1149
    • 6l Vedrenne E, Wallner OA, Vitale M, Schmidt F, Aggarwal VK. Org. Lett. 2009; 11: 165
    • 7a Matteson DS, Majumdar D. Organometallics 1983; 2: 1529
    • 7b Sadhu KM, Matteson DS. Organometallics 1985; 4: 1687
    • 7c Brown HC, Rangaishenvi MV, Jayaraman S. Organometallics 1992; 11: 1948
    • 8a Stymiest JL, Bagutski V, French RM, Aggarwal VK. Nature 2008; 456: 778
    • 8b Bagutski V, French RM, Aggarwal VK. Angew. Chem. Int. Ed. 2010; 49: 5142
    • 8c Shimizu M. Angew. Chem. Int. Ed. 2011; 50: 5998
    • 8d Scott HK, Aggarwal VK. Chem. Eur. J. 2011; 17: 13124
    • 8e Sonawane RP, Jheengut V, Rabalakos C, Larouche-Gauthier R, Scott HK, Aggarwal VK. Angew. Chem. Int. Ed. 2011; 50: 3760
    • 9a Lombardo M, Morganti S, Tozzi M, Trombini C. Eur. J. Org. Chem. 2002; 2823
    • 9b Pietruszka J, Schӧne N. Angew. Chem. Int. Ed. 2003; 42: 5638
    • 9c Berrée F, Gernigon N, Hercouet A, Lin CH, Carboni B. Eur. J. Org. Chem. 2009; 329
    • 9d Vogt M, Ceylan S, Kirschning A. Tetrahedron 2010; 66: 6450
    • 10a Hoffmann RW, Dresely S. Angew. Chem., Int. Ed. Engl. 1986; 25: 189
    • 10b Schlapbach A, Hoffmann RW. Eur. J. Org. Chem. 2001; 323
    • 10c Carosi L, Hall DG. Angew. Chem. Int. Ed. 2007; 46: 5913
    • 10d Carosi L, Hall DG. Can. J. Chem. 2009; 87: 650
    • 11a Takahashi K, Ishiyama T, Miyaura N. J. Organomet. Chem. 2001; 625: 47
    • 11b Ito H, Sasaki Y, Sawamura M. J. Am. Chem. Soc. 2008; 130: 15774
    • 11c Lee J.-E, Kwon J, Yun J. Chem. Commun. 2008; 44: 733
    • 11d Lipshutz BH, Bošković ŽV, Aue DH. Angew. Chem. Int. Ed. 2008; 47: 10183
    • 11e Lee Y, Jang H, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 18234
    • 11f Kim HR, Jung IG, Yoo K, Jang K, Lee ES, Yun J, Son SU. Chem. Commun. 2010; 46: 758
    • 11g Jang H, Zhugralin AR, Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7859
    • 11h Kim HR, Yun J. Chem. Commun. 2011; 47: 2943
    • 11i Sasaki Y, Horita Y, Zhong C, Sawamura M, Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
    • 11j Moure AL, Gómez Arrayás R, Cárdenas DJ, Alonso I, Carretero JC. J. Am. Chem. Soc. 2012; 134: 7219
    • 11k Semba K, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2012; 18: 4179
  • 12 Park JK, Ondrusek BA, McQuade DT. Org. Lett. 2012; 14: 4790
  • 13 Hesse MJ, Butts CP, Willis CL, Aggarwal VK. Angew. Chem. Int. Ed. 2012; 51: 12444
  • 14 The results of such an oxidation to yield a tertiary allylic alcohol are included in the Supporting Information. Compounds not found within the text are numbered sequentially beginning with 9.
  • 15 A mechanistic rationale for E-selectivity is included in the Supporting Information.