Synthesis 2014; 46(06): 799-808
DOI: 10.1055/s-0033-1340565
paper
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Asymmetric Synthesis of Functionalized 1,3,5-Triarylpyrrolidin-2-ones via an Aza-Michael/Aldol Domino Reaction

Céline Joie
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Fax: +49(241)8092127   Email: enders@rwth-aachen.de
,
Kristina Deckers
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Fax: +49(241)8092127   Email: enders@rwth-aachen.de
,
Dieter Enders*
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Fax: +49(241)8092127   Email: enders@rwth-aachen.de
› Author Affiliations
Further Information

Publication History

Received: 10 December 2013

Accepted: 13 December 2013

Publication Date:
09 January 2014 (online)

 


Abstract

The organocatalytic asymmetric synthesis of functionalized 1,3,5-triarylpyrrolidin-2-ones bearing three contiguous stereocenters through an aza-Michael/aldol domino reaction of α-ketoamides with α,β-unsaturated aldehydes is described. The domino products were further derivatized by aldehyde olefination under one-pot conditions. The reaction proceeds with excellent diaste­reoselectivities (>20:1) and good to excellent enantioselectivities (60–96% ee).


#

The polysubstituted pyrrolidin-2-one or γ-lactam core is a crucial structural feature of numerous pharmaceuticals and natural products of diverse complexity possessing various biological activities (Figure [1]). Prominent examples are lactacystin (A)[1] isolated from Streptomyces and acting against multiple cancer cell lines as a proteasome inhibitor; clausenamide (B),[2] rolipram (C),[3] known as an anti-inflammatory and antidepressant agent; and cotinine (D),[4] a metabolite of nicotine also used as an antidepressant. Even closer to the title compounds, 3,5-diarylpyrrolidin-2-ones E have shown activity as neurokinin-1 (NK1) antagonists[5] or as endothelin receptor antagonists.[6] As a result, multiple synthetic pathways have been developed in order to access these nitrogen-containing five-membered heterocycles.[7] Various diastereoselective syntheses of these polysubstituted pyrrolidin-2-ones have already been reported,[8] whereas enantioselective methods are less developed.[9]

The rapidly growing field of asymmetric organocatalysis has proved to be a powerful tool for the synthesis of chiral molecules and it has been widely applied in synthesis.[10] Particularly, organocatalyzed domino reactions have shown their efficiency when it comes to the one-pot formation of several bonds yielding highly substituted compounds­ with excellent diastereo- and enantioselectivities.[11] Secondary amine catalysts working via iminium or enamine activation of carbonyl compounds have been efficiently used in simple,[12] triple,[13] and quadruple[14] cascade reactions.

The organocatalyzed aza-Michael addition has been frequently used in the asymmetric synthesis of nitrogen-containing­ molecules.[15] Domino reactions with substrates that bear a nucleophilic nitrogen atom and electrophilic centers have been used to achieve the synthesis of heterocycles. α-Ketoamides have already been employed in organocatalysis,[16] although the nucleophilicity of their nitrogen atom has not been exploited yet in an aza-Michael­ addition. Furthermore, these molecules also possess two electrophilic centers that make them ideal partners for the design of new cascade reactions.

Zoom Image
Figure 1 Typical examples of pyrrolidin-2-one-containing natural products and pharmaceuticals

Herein we wish to report an organocatalyzed asymmetric synthesis of densely substituted pyrrolidin-2-ones via an aza-Michael/aldol domino reaction sequence of α-keto­amides with α,β-unsaturated aldehydes, followed by aldehyde olefination in a one-pot fashion (Scheme [1]).

Zoom Image
Scheme 1 Asymmetric one-pot synthesis of functionalized 1,3,5-triarylpyrrolidin-2-one derivatives by an organocatalytic simple domino reaction followed by Wittig olefination

We began by investigating the reaction of 2-oxo-N,2-diphenylacetamide (1a), cinnamaldehyde (2a), and 20 mol% of the diphenylprolinol trimethylsilyl ether catalyst (S)-3a (Table [1]). Although chloroform, dichloromethane, and toluene yielded mainly the condensation product 7 and its isomerized equivalent 8 (entries 1–3), ethanol, methanol, and dimethyl sulfoxide appeared to furnish the desired product 4. We realized that the domino product itself was not suitable for purification and analysis due to its relative instability. As a consequence, the aldehyde 4 was trapped in a one-pot fashion with 1.5 equivalents of the stabilized Wittig reagent 5 converting it into the more stable α,β-unsaturated ester 6.

Table 1 Optimization of the Reaction Conditionsa

Entry

Catalyst

Solvent

Timeb (h)

Ratio 1a/2a

Yieldc (%) of 6a

 1

3a

CH2Cl2

 4.5

1:1

d

 2

3a

CHCl3

 4.5

1:1

d

 3

3a

toluene

 4.5

1:1

d

 4

3a

DMSO

 4.5

1:1

10

 5

3a

MeOH

 4.5

1:1

51

 6

3a

EtOH

 4.5

1:1

50

 7

3b

EtOH

 4.5

1:1

10

 8

3c

EtOH

 4.5

1:1

 9

3d

EtOH

 4.5

1:1

10

3a

EtOH

 3

1:1

42

11

3a

EtOH

 8

1:1

46

12

3a

EtOH

16

1:1

d

13

3a

EtOH

 4.5

1:1.5

14

3a

EtOH

 4.5

1.5:1

65

15

3a

EtOH

 4.5

2:1

66

a Unless otherwise noted, all reactions were performed on a 0.33-mmol scale using the indicated ratio of 1a/2a, catalyst (20 mol%), solvent (1.5 mL), r.t., for the indicated time, followed by addition of the Wittig reagent (1.5 equiv) with reaction overnight.

b Time for the domino reaction before the introduction of the Wittig reagent.

c Isolated yield.

d A mixture of 7 and 8 was obtained.

After performing a short catalyst screening and an evaluation of the optimum reaction conditions, we concluded that the best results were obtained using 1.5 equivalents of the α-ketoamide 1a, 1 equivalent of the cinnamaldehyde 2a and 20 mol% of the catalyst 3a. The reaction was performed in 1.5 mL of ethanol for 4.5 hours at room temperature before the addition of 1.5 equivalents of the Wittig reagent (entry 15). A decrease in the catalyst loading gave lower yields, while increasing it gave no significant improvement; using a longer reaction time before the addition of the Wittig reagent also did not improve the outcome of the reaction (entry 11). Performing the reaction overnight yielded almost exclusively dehydrated products 7 and 8 (entry 12).

With the optimized conditions in hand, we explored the scope of the reaction. Initially we varied the α,β-unsaturated aldehyde moiety 2 (Table [2]). Although the yields show high variations (between 20 and 73%), the reaction tolerates electron-withdrawing as well as electron-donating groups giving products 6ai with good to excellent enantioselectivities (entries 1–9). Heteroaryl substituents are also well accepted giving 6h,i, although a lower asymmetric induction was observed with the furyl derivative 6h (entries 8 and 9). Aliphatic residues did not lead to any satisfactory results.

Table 2 Reaction of α-Ketoamides 1 with α,β-Unsaturated Aldehydes 2 a

Entry

1

R1

R2

2

R3

Product

T1 (h)b

T2 (h)c

Yieldd (%)

eee (%)

 1

1a

Ph

Ph

2a

Ph

6a

 4.5

16

65

87 (91)f

 2

1a

Ph

Ph

2b

4-MeOC6H4

6b

 4.5

 2

54

95 (93)f

 3

1a

Ph

Ph

2c

4-ClC6H4

6c

 5 (4.5)f

 1 (16)f

58 (34)f

90 (96)f

 4

1a

Ph

Ph

2d

4-Me2NC6H4

6d

 5

 2

20

89 (90)f

 5

1a

Ph

Ph

2e

4-O2NC6H4

6e

 5.5 (16)f

 1 (2)f

21 (25)f

86 (83)f

 6

1a

Ph

Ph

2f

3,4,5-(BnO)3C6H2

6f

16

 2

52 (61)f

82

 7

1a

Ph

Ph

2g

3,4-(OCH2O)C6H3

6g

16

 2

56 (51)f

89

 8

1a

Ph

Ph

2h

2-furyl

6h

16

 2

51

60

 9

1a

Ph

Ph

2i

1-Boc-1H-indol-3-yl

6i

16

 2

59 (48)f

81 (88)f

10

1b

2-IC6H4

Ph

2a

Ph

6j

 3

 2

44

88 (95)f

11

1c

4-MeOC6H4

Ph

2a

Ph

6k

 4.5

 1

60

81 (89)f

12

1d

Ph

2,4-(MeO)2C6H3

2a

Ph

6l

 7

16

69

90

13

1e

Ph

2-MeC6H4

2a

Ph

6m

16

 2

73

93

14

1f

Ts

Ph

2a

Ph

6n

 5

 2

33

96

a All the reactions were run on a 0.33-mmol scale with α-ketoamide (1.5 equiv), α,β-unsaturated aldehyde (1 equiv), 3a (20 mol%), EtOH (1.5 mL), r.t. All the products were obtained as a single diastereomer.

b Time for the domino reaction before the addition of the Wittig reagent 5 (1.5 equiv).

c Time for the olefination.

d Yield of the isolated product 6an after flash column chromatography.

e Determined by HPLC on a chiral stationary phase.

f Values in parentheses correspond to the results obtained with the catalyst (R)-3a.

The extension of the scope regarding the α-ketoamide substrate was also investigated. For this purpose we synthesized derivatives bearing different groups on both aromatic rings (R1, R2), and performed the cascade reactions using the optimum conditions (entries 10–13). The yields of 6jm as well as the enantioselectivities were in accordance with the results obtained previously. Other α-keto­amide derivatives bearing nonaromatic residues were also tested in the cascade reaction, however these did not react in the desired fashion, with the exception of the 2-oxo-2-phenyl-N-tosylacetamide (1f), which gave the desired pyrrolidin-2-one 6n in very good yield with excellent enantioselectivity (entry 14).

In the present transformation we assume that the reaction is initiated by an aza-Michael addition of the nucleophilic nitrogen of the α-ketoamide to the iminium-activated α,β-unsaturated aldehyde 9. This yields the acyclic intermediate 10 that undergoes an aldol addition cyclization due to the enamine activation providing the intermediate 11, and the product 4a after hydrolysis and return of the catalyst (Scheme [2]). The expected transition states for the iminium [Scheme [3] (a)] as well as for the enamine activation [Scheme [3] (b)] allowed us to predict the relative and absolute configuration of the products. They were confirmed by NOESY experiments on 6l [Scheme [3] (c)].

Zoom Image
Scheme 2 Proposed mechanism for the domino reaction
Zoom Image
Scheme 3 Proposed transition states for (a) iminium activation, (b) enamine activation, (c) determination of the relative configuration by NOESY measurements

In conclusion, we have developed a new convenient organocatalytic method for the asymmetric synthesis of functionalized 1,3,5-triarylpyrrolidin-2-ones in good yields, virtually complete diastereoselectivities, and very good enantioselectivities via an aza-Michael/aldol addition domino reaction between α-ketoamides and α,β-unsaturated aldehydes. As the pyrrolidin-2-one substructure is widely present in a large number of biologically active molecules, our protocol could provide a new approach for these γ-lactams. The applications of the method described here are currently being investigated.

Unless otherwise noted, all commercially available compounds were used without further purification. Preparative column chromatography SIL G-25 UV252 from Macherey & Nagel, particle size 0.040–0.063 nm (230–240 mesh, flash). Visualization of the developed TLC plates was performed with UV irradiation (254 nm) and by staining with vanillin stain. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. Mass spectra were recorded on a Finnigan SSQ7000 (EI 70 eV) spectrometer and HRMS on a Thermo Fisher Scientific Orbitrap XL spectrometer. IR spectra were recorded on a Perkin-Elmer FT-IR Spectrum 100 using ATR-Unit. 1H and 13C spectra were recorded at r.t. on Varian Mercury 600 or Inova 400 instruments with TMS as an internal standard. Analytical HPLC was performed on a Hewlett-Packard 1100 Series instrument using chiral stationary phases (Daicel AD, Daicel AS, Daicel IA, Daicel OD, Diacel OJ, or Chiralpak IC). α-Ketoamide 1d was prepared from ethyl 2-(2,4-dimethoxyphenyl)-2-oxoacetate via 2-(2,4-dimethoxyphenyl)-2-oxoacetic acid; α-ketoamide 1e was prepared from o-methylmandelic acid via 2-methylphenylglyoxylic acid.


#

α-Ketoamides 1; General Procedure

To a solution of phenylglyoxylic acid (1.774 g, 12 mmol, 1 equiv) in N,N-dimethylacetamide (30 mL) cooled to –15 °C, SOCl2 (1.0 mL, 13.8 mmol, 1.15 equiv) was added dropwise. After stirring for 1 h at this temperature, aniline (1.5 mL, 16.7 mmol, 1.4 equiv) was added and the mixture was stirred for 3 h at temperatures between –10 °C and 0 °C, then poured onto a mixture of ice and H2O and stirred at r.t. overnight. The solid formed was dissolved in Et2O (50 mL) and extracted with Et2O (3 × 20 mL). The combined organic layers were washed with H2O and brine, dried (Na2SO4), and concentrated in vacuo before purification by flash column chromatography.


#

Domino Reaction; General Procedure

A solution of α-ketoamide 1 (0.5 mmol, 1.5 equiv), α,β-unsaturated aldehyde 2 (0.33 mmol, 1 equiv), and (S)-TMS-diphenylprolinol catalyst 3a (23 mg, 0.066 mmol, 0.2 equiv) in EtOAc (1.5 mL) was stirred at r.t. After the indicated period, the Wittig reagent 5 (0.174 g, 0.5 mmol, 1.5 equiv) was added and the reaction was stirred at r.t. for the indicated time. Brine (20 mL) was added and the product was extracted with Et2O (3 × 15 mL). The combined organic layers were dried (MgSO4), concentrated in vacuo, and purified by flash column chromatography (n-pentane–EtOAc, 3:1).


#

2-Oxo-N,2-diphenylacetamide (1a)

Following the general procedure using aniline (1.5 mL, 16.7 mmol, 1.4 equiv) and phenylglyoxylic acid (1.774 g, 12 mmol, 1 equiv) with purification of the crude product by flash column chromatography (n-pentane–Et2O, 4:1) gave 1a (2.69 g, 99%) as a yellow solid; Rf  = 0.5 (n-pentane–Et2O, 4:1).

1H NMR (600 MHz, CDCl3): δ = 7.18 (m, 1 H, CHAr), 7.38 (m, 2 H, CHAr), 7.49 (m, 2 H, CHAr), 7.64 (m, 1 H, CHAr), 7.69 (dd, J = 1.2, 8.4 Hz, 2 H, CHAr), 8.40 (dd, J = 1.2, 8.4 Hz, 2 H, CHAr), 8.97 (br s, 1 H, NH).

13C NMR (150 MHz, CDCl3): δ = 119.9 (CHAr), 125.3 (CHAr), 128.5 (CHAr), 129.2 (CHAr), 131.4 (CHAr), 133.0 (C), 134.6 (CHAr), 136.6 (C), 158.9 (NCO), 187.4 (CO).


#

N-(2-Iodophenyl)-2-oxo-2-phenylacetamide (1b)

Following the general procedure using 2-iodoaniline (1.41 g, 6.4 mmol, 1.4 equiv) and phenylglyoxylic acid (0.69 g, 12 mmol, 1 equiv) with purification of the crude product by flash column chromatography (n-pentane–Et2O 6:1) gave 1b (0.88 g, 54%) as a yellow solid; mp 47 °C; Rf  = 0.43 (n-pentane–Et2O, 9:1).

IR (ATR): 3612, 3299, 3055, 1697, 1661, 1577, 1514, 1433, 1271, 1155, 986, 943, 870, 801, 740, 676 cm–1.

1H NMR (600 MHz, CDCl3): δ = 6.93 (t, J = 7.2 Hz, 1 H, CHAr), 7.42 (t, J = 7.2 Hz, 1 H, CHAr), 7.53 (t, J = 7.2 Hz, 2 H, CHAr), 7.67 (t, J = 7.2 Hz, 1 H, CHAr), 7.85 (d, J = 7.8 Hz, 1 H, CHAr), 8.41 (d, J = 7.8 Hz, 1 H, CHAr), 8.44 (d, J = 7.2 Hz, 2 H, CHAr), 9.44 (br s, 1 H, NH).

13C NMR (150 MHz, CDCl3): δ = 90.5 (CI), 121.7 (CHAr), 127.1 (CHAr), 128.9 (CHAr), 129.6 (CHAr), 131.8 (CHAr), 133.3 (C), 135.1 (CHAr), 137.6 (C), 139.6 (CHAr), 152.2 (NCO), 187.0 (CO).

MS (EI, 70 eV): m/z (%) = 351 (33), 244 (12), 224 (100), 196 (13), 119 (12), 77 (65), 76 (18), 55 (12), 54 (15).

Anal. Calcd for C14H10INO2: C, 47.89; H, 2.87; N, 3.99. Found: C, 47.60; H, 2.60; N, 3.89.


#

N-(4-Methoxyphenyl)-2-oxo-2-phenylacetamide (1c)

Following the general procedure using p-anisidine (431 mg, 3.5 mmol, 1.4 equiv) and phenylglyoxylic acid (376 mg, 2.5 mmol, 1 equiv) with purification of the crude product by flash column chromatography (n-pentane–Et2O, 2:1) gave 1c (495 mg, 76%) as a yellow solid; mp 103 °C; Rf  = 0.43 (n-pentane–Et2O, 2:1).

1H NMR (600 MHz, CDCl3): δ = 3.82 (s, 3 H, CH3), 6.92 (d, J = 8.4 Hz, 2 H, CHAr), 7.50 (t, J = 7.8 Hz, 2 H, CHAr), 7.64 (m, 3 H, CHAr), 8.41 (d, J = 7.8 Hz, 2 H, CHAr), 8.89 (br s, 1 H, NH).

13C NMR (150 MHz, CDCl3): δ = 55.5 (OCH3), 114.4 (CHAr), 121.5 (CHAr), 128.5 (CHAr), 129.8 (C), 131.4 (CHAr), 133.2 (C), 134.5 (CHAr), 157.1 (COCH3), 158.7 (NCO), 187.6 (CO).


#

Ethyl 2-(2,4-Dimethoxyphenyl)-2-oxoacetate

To a solution of 1,3-dimethoxybenzene (1.31 mL, 10 mmol, 1 equiv) in anhyd CH2Cl2 (20 mL) cooled to 0 °C under argon SnCl4 was carefully added (1.4 mL, 12 mmol, 1.2 equiv), and the solution was stirred for 30 min at r.t. After cooling to 0 °C, ethyl oxalyl chloride (3.36 mL, 30 mmol, 3 equiv) was added dropwise, followed by MeNO2 (15 mL). The resulting dark purple solution was stirred for 1 h at r.t. The reaction was quenched by the careful addition of sat. aq NaHCO3 (10 mL), the pH was brought to 10 by the addition of 25% NaOH (10 mL) and the mixture was stirred at r.t. for 1 h. The crude product was extracted with EtOAc (3 × 25 mL) and the combined organic layers were washed with H2O, dried (MgSO4), and evaporated in vacuo. Flash column chromatography (n-pentane–Et2O 1:1) of the residue gave the product (1.133 g, 47.5%) as a colorless oil; Rf  = 0.26 (n-pentane–Et2O, 1:1).

IR (ATR): 3098, 2980, 2846, 1739, 1661, 1594, 1464, 1374, 1302, 1208, 1117, 1024, 919, 836, 754, 673, 583, 515 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.39 (t, J = 7.2 Hz, 3 H, CH2CH3), 3.85 (s, 3 H, OCH3), 3.88 (s, 3 H, OCH3), 4.37 (q, J = 7.2 Hz, 2 H, CH2), 6.43 (d, J = 1.8 Hz, 1 H, CHAr), 6.60 (dd, J = 1.8, 9 Hz, 1 H, CHAr), 7.91 (d, J = 9 Hz, 1 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 14.2 (CH3), 55.7 (OCH3), 56.0 (CH3), 61.6 (CH2), 98.2 (CHAr), 106.7 (CHAr), 116.0 (C), 132.9 (CHAr), 162.3 (C), 165.9 (C), 166.7 (C), 185.0 (C).

MS (ESI): m/z (%) = 261 (100, [M + Na]+), 239 (55, [M + H]+).

Anal. Calcd for C12H14O5: C, 60.50; H, 5.92. Found: C, 60.30; H, 5.79.


#

2-(2,4-Dimethoxyphenyl)-2-oxoacetic Acid

To a solution of ethyl 2-(2,4-dimethoxyphenyl)-2-oxoacetate (1.0 g, 4.2 mmol) in EtOH (50 mL) was added 2 M aq NaOH (14 mL). The mixture was stirred for 15 min at r.t. and the pH was brought to 1 with 10% HCl. The product was extracted with CH2Cl2 (3 × 25 mL), dried (MgSO4), and the solvent was evaporated. Filtration (silica gel, acetone) gave pure product (0.69 g, 79%) as a beige solid; Rf  = 0.4 (n-pentane–acetone, 1:1).

IR (ATR): 2987, 2945, 2845, 1708, 1649, 1591, 1469, 1422, 1341, 1310, 1282, 1248, 1210, 1106, 1017, 981, 898, 833, 773, 736, 696, 671 cm–1.

1H NMR (600 MHz, CDCl3): δ = 3.90 (s, 6 H, OCH3), 6.46 (d, J = 1.8 Hz, 1 H, CHAr), 6.62 (dd, J = 1.8, 8.4 Hz, 1 H, CHAr), 7.98 (d, J = 8.4 Hz, 1 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 55.8 (CH3), 56.1 (CH3), 98.3 (CHAr), 106.9 (CHAr), 115.3 (C), 133.3 (CHAr), 162.7 (C), 167.1 (C), 167.1 (COOH), 183.7 (CO).

Anal. Calcd for C10H10O5: C, 57.14; H, 4.80. Found: C, 57.16; H, 5.09.


#

2-(2,4-Dimethoxyphenyl)-2-oxo-N-phenylacetamide (1d)

Following the general procedure using aniline (0.37 g, 4.0 mmol, 1.4 equiv) and 2-(2,4-dimethoxyphenyl)-2-oxoacetic acid (0.6 g, 2.85 mmol, 1 equiv), with purification of the crude product by flash column chromatography (n-pentane–Et2O 1:2) gave 1d (0.79 g, 98%) as a colorless solid; mp 91–93 °C; Rf  = 0.4 (n-pentane–Et2O, 1:2).

IR (ATR): 3278, 3144, 3092, 1655, 1593, 1493, 1447, 1280, 1207, 1124, 874, 836, 745, 690 cm–1.

1H NMR (600 MHz, CDCl3): δ = 3.85 (s, 3 H, OCH3), 3.88 (s, 3 H, OCH3), 6.49 (s, 1 H, CHAr), 6.57 (d, J = 9 Hz, 1 H, CHAr), 7.17 (t, J = 7.2 Hz, 1 H, CHAr), 7.38 (t, J = 7.8 Hz, 2 H, CHAr), 7.67 (d, J = 7.8 Hz, 2 H, CHAr), 7.92 (dd, J = 1.8, 8.4 Hz, 1 H, CHAr), 8.53 (br s, 1 H, NH).

13C NMR (150 MHz, CDCl3): δ = 55.7 (OCH3), 56.1 (OCH3), 98.9 (CHAr), 105.4 (CHAr), 116.8 (C), 119.8 (2 C, CHAr), 124.9 (CHAr), 129.1 (2 C, CHAr), 134.3 (CHAr), 137.1 (C), 160.9 (C), 162.2 (C), 165.7 (NCO), 188.5 (CO).

MS (EI, 70 eV): m/z (%) = 308.09 ([M + Na]+), 286.11 ([M + H]+).

Anal. Calcd for C16H15NO2: C, 67.36; H, 5.30; N, 4.91. Found: C, 67.11; H, 5.43; N, 4.89.


#

o-Methylmandelic Acid

To a solution of 2-methylbenzaldehyde (12 g, 100 mmol, 1 equiv) and BnEt3NCl (1.23 g, 5 mmol, 0.05 equiv) in CHCl3 (16 mL) was added carefully aq NaOH (1 g/mL) (25 mL). The resulting orange slurry was refluxed for 1 h and then cooled to r.t. H2O was added (400 mL) and the mixture was extracted with Et2O (2 × 100 mL). The remaining aqueous layer was acidified with concd HCl until pH 1 and extracted with Et2O (6 × 50 mL). The combined organic layers were dried (MgSO4), and the solvent removed in vacuo. Recrystallization (toluene) gave o-methylmandelic acid (6.99 g, 42%) as a colorless solid; Rf  = 0.27 (n-pentane–Et2O, 1:1).

1H NMR (600 MHz, CDCl3): δ = 2.35 (s, 3 H, CH3), 5.19 (s, 1 H, CHOH), 7.15–7.27 (m, 4 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 21.3 (CH3), 73.0 (CHOH), 124.1 (CHAr), 127.5 (CHAr), 129.0 (CHAr), 130.0 (CHAr), 137.6 (C), 138.9 (C), 178.3 (COOH).


#

2-Methylphenylglyoxylic Acid

o-Methylmandelic acid (2.98 g, 0.025 mol) was added to 1.0 M KOH (75 mL) and the mixture was stirred at 0 °C for 10 min. KMnO4 (6.0 g, 37.8 mmol) was added portionwise and the resulting solution was stirred for 30 min at 0 °C. Na2SO3 (21 g, 165 mmol) was added, and concd HCl was added carefully until the solution became colorless. The product was extracted with CH2Cl2 (4 × 50 mL) and dried (MgSO4). Evaporation of the solvent gave 2-methylphenylglyoxylic acid (1.96 g, 48%) as a colorless solid; mp 73 °C; Rf  = 0.5 (n-pentane–acetone, 1:1).

IR (ATR): 2998 (s), 2661 (w), 2542 (w), 1679 (s), 1610 (m), 1417 (s), 1273 (s), 1209 (m), 1156 (m), 1095 (s), 1039 (w), 925 (m), 841 (m), 781 (m), 724 (s), 686 cm–1 (m).

1H NMR (600 MHz, CDCl3): δ = 2.44 (s, 3 H, CH3), 7.42 (t, J = 7.2 Hz, 1 H, CHAr), 7.51 (d, 1 Hr, J = 7.8 Hz, CHA), 8.07 (m, 2 H, CHAr), 8.90 (br s, 1 H, COOH).

13C NMR (150 MHz, CDCl3): δ = 21.2 (CH3), 128.4 (CHAr), 128.9 (CHAr), 131.3 (CHAr), 131.7 (C), 136.5 (CHAr), 139.0 (C), 163.3 (COOH), 184.9 (COCOOH).

MS (EI, 70 eV): m/z (%) = 164 (5), 120 (7), 119 (100), 91 (45), 65 (10).

Anal. Calcd for C9H8O3: C, 65.85; H, 4.91. Found: C, 65.51; H, 4.97.


#

2-Oxo-N-phenyl-2-(2-tolyl)acetamide (1e)

Following the general procedure using aniline (1.56 g, 16.8 mmol, 1.4 equiv) and 2-methylphenylglyoxylic acid (1.96 g, 12 mmol, 1 equiv), with purification of the crude product by flash column chromatography (n-pentane–Et2O, 6:1) gave 1e (1.64 g, 57%) as a yellow solid; mp 82 °C; Rf  = 0.39 (n-pentane–Et2O, 6:1).

IR (ATR): 3360, 3054, 2913, 1686, 1656, 1595, 1535, 1494, 1439, 1375, 1281, 1150, 1105, 1037, 983, 894, 825, 744, 680 cm–1.

1H NMR (600 MHz, CDCl3): δ = 2.43 (s, 3 H, CH3), 7.19 (t, J = 7.2 Hz, 1 H, CHAr), 7.39 (m, 3 H, CHAr), 7.47 (d, J = 7.2 Hz, 1 H, CHAr), 7.70 (d, J = 7.8 Hz, 2 H, CHAr), 8.21 (m, 2 H, CHAr), 8.94 (br s, 1 H, NH).

13C NMR (150 MHz, CDCl3): δ = 21.3 (CH3), 119.9 (CHAr), 125.3 (CHAr), 128.5 (CHAr), 128.7 (CHAr), 129.2 (CHAr), 131.8 (CHAr), 133.0 (C), 135.5 (CHAr), 136.7 (C), 138.4 (C), 159.0 (NCO), 187.6 (CO).

MS (EI, 70 eV): m/z (%) = 239 (31), 120 (12), 119 (100), 91 (31), 65 (10).

Anal. Calcd for C15H13NO2: C, 75.30; H, 5.48; N, 5.85. Found: C, 75.33; H, 5.48; N, 6.02.


#

2-Oxo-2-phenyl-N-tosylacetamide (1f)

SOCl2 (0.6 mL, 8 mmol, 1.2 equiv) was added dropwise to a solution of phenylglyoxylic acid (1 g, 6.6 mmol, 1 equiv) in N,N-dimethylacetamide (16 mL) cooled to 0 °C. After stirring at this temperature for 10 min, TsNH2 (1.61 g, 9.4 mmol, 1.4 equiv) was added and the mixture was stirred at 60 °C overnight, then poured into a mixture of ice and H2O and stirred at r.t. for 4.5 h. The product was extracted with Et2O (3 × 15 mL), the combined organic layers were washed with H2O and brine, dried (Na2SO4), and concentrated in vacuo. The crude product was purified by flash column chromatography (n-pentane–Et2O, 1:1) to afford 1f (0.82 g, 41%) as a colorless solid; mp 52–55 °C; Rf  = 0.43 (EtOAc).

IR (ATR): 3357, 3253, 1717, 1680, 1594, 1527, 1491, 1410, 1346, 1298, 1269, 1188, 1167, 1132, 1087, 977, 874, 813, 775, 739, 662 cm–1.

1H NMR (600 MHz, CD3OD): δ = 2.44 (s, 3 H, CH3), 7.34 (d, J = 7.8 Hz, 2 H, CHAr), 7.45 (t, J = 7.8 Hz, 2 H, CHAr), 7.61 (t, J = 7.2 Hz, 1 H, CHAr), 7.87 (d, J = 7.2 Hz, 2 H, CHAr), 7.91 (d, J = 7.8 Hz, 2 H, CHAr).

13C NMR (150 MHz, CD3OD): δ = 20.0 (CH3), 126.8 (2 C, CHAr), 128.2 (2 C, CHAr), 128.5 (2 C, CHAr), 129.5 (2 C, CHAr), 133.4 (C), 133.6 (CHAr), 140.4 (C), 142.2 (C), 172.3 (NCO), 192.9 (CO).

MS (ESI): m/z (%) = 326 (100, [M + Na]+).

HRMS: m/z [M + Na]+ calcd for C15H13NO4NaS: 326.0457; found: 326.0457.


#

Ethyl (E)-3-[(2S,3R,4R)-4-Hydroxy-5-oxo-1,2,4-triphenylpyrrolidin-3-yl]acrylate (6a)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6a as a colorless solid; yield: 91 mg (65%); mp 165–170 °C; 87% ee [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.46 (n-pentane–EtOAc, 3:1); [α]D 22 +109.0 (c 0.51, CHCl3).

IR (ATR): 3336, 3054, 2984, 1696, 1601, 1538, 1495, 1449, 1374, 1276, 1174, 1120, 1033, 979, 871, 749, 693 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.24 (t, J = 7.2 Hz, 3 H, CH3), 2.95 (t, J = 8.4 Hz, 1 H, NCHCH), 3.46 (br s, 1 H, OH), 4.13 (q, J = 7.2 Hz, 2 H, CH2), 5.24 (d, J = 8.4 Hz, 1 H, NCHPh), 5.36 (d, J = 15 Hz, 1 H, CHCOOEt), 7.08–7.47 (m, 16 H, CHAr, CH=CHCOOEt).

13C NMR (150 MHz, CDCl3): δ = 14.1 (CH3), 59.7 (NCHCH), 60.5 (CH2), 65.1 (NCHPh), 80.8 (COH), 123.8 (2 C, CHAr), 125.8 (2 C, CHAr), 125.9 (CHAr), 126.4 (CHCOOEt), 127.0 (2 C, CHAr), 128.1 (CHAr), 128.2 (CHAr), 128.4 (2 C, CHAr), 128.6 (2 C, CHAr), 128.8 (2 C, CHAr), 137.0 (C), 137.2 (C), 139.7 (CH=CHCOOEt), 140.5 (C), 165.5 (COOEt), 173.8 (NCO).

MS (EI, 70 eV): m/z (%) = 428 (19), 427 (60), 410 (13), 409 (43), 335 (11), 203 (21), 202 (34), 182 (42), 181 (17), 180 (21), 157 (36), 144 (11), 129 (39), 128 (22), 115 (12), 105 (100), 104 (10), 91 (13), 77 (53).

Anal. Calcd for C27H25NO4: C, 75.86; H, 5.89; N, 3.28. Found: C, 75.61; H, 5.87; N, 3.14.


#

Ethyl (E)-3-[(2S,3R,4R)-4-Hydroxy-2-(4-methoxyphenyl)-5-oxo-1,4-diphenylpyrrolidin-3-yl]acrylate (6b)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6b as a colorless solid; yield: 81 mg (54%); mp 85–88 °C; 95% ee [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.29 (n-pentane–EtOAc, 3:1); [α]D 22 +118.6 (c 0.5, CHCl3).

IR (ATR): 3357, 2976, 1699, 1603, 1506, 1373, 1247, 1175, 1115, 1031, 979, 831, 751, 692 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.24 (t, J = 7.2 Hz, 3 H, CH3), 2.94 (t, J = 9 Hz, 1 H, NCHCH), 3.24 (br s, 1 H, OH), 2.72 (s, 3 H, OCH3), 4.14 (q, J = 7.2 Hz, 2 H, CH2), 5.20 (d, J = 9 Hz, 1 H, NCHPh), 5.39 (d, J = 15.6 Hz, 1 H, CHCOOEt), 6.75 (d, J = 9 Hz, 2 H, CHAr), 7.08–7.12 (m, 3 H, CHAr), 7.20 (dd, J = 9, 15.6 Hz, 1 H, CH=CHCOOEt), 7.24–7.49 (m, 9 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 14.2 (CH3), 55.1 (OCH3), 59.7 (NCHCH), 60.5 (CH2), 64.7 (NCHPh), 80.8 (COH), 124.0 (2 C, CHAr), 125.8 (2 C, CHAr), 125.9 (CHCOOEt), 126.4 (CHAr), 128.2 (CHAr), 128.3 (2 C, CHAr), 128.5 (2 C, CHAr), 128.6 (2 C, CHAr), 128.9 (C), 137.0 (C), 139.8 (CH=CHCOOEt), 140.6 (C), 159.3 (C), 165.5 (COOEt), 173.8 (NCO).

MS (EI, 70 eV): m/z (%) = 457 (14), 440 (32), 439 (100), 365 (15), 232 (20), 212 (45), 211 (44), 210 (23), 187 (17), 159 (14), 121 (41), 105 (41), 77 (25).

HRMS: m/z [M + H]+ calcd for C28H28NO5: 458.1962; found: 458.1962.


#

Ethyl (E)-3-[(2S,3R,4R)-2-(4-Chlorophenyl)-4-hydroxy-5-oxo-1,4-diphenylpyrrolidin-3-yl]acrylate (6c)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6c as a colorless solid; yield: 88 mg (58%); mp 90–92 °C; 90% ee [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.4 (n-pentane–EtOAc, 3:1); [α]D 22 +127.1 (c 0.5, CHCl3).

IR (ATR): 3362, 1699, 1596, 1494, 1452, 1373, 1253, 1174, 1090, 1027, 981, 832, 797, 749, 692 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.24 (t, J = 7.2 Hz, 3 H, CH3), 2.86 (t, J = 8.8 Hz, 1 H, NCHCH), 3.59 (br s, 1 H, OH), 4.14 (q, J = 7.2 Hz, 2 H, CH2), 5.22 (d, J = 8.4 Hz, 1 H, NCHPh), 5.35 (d, J = 16 Hz, 1 H, CHCOOEt), 7.08–7.43 (m, 15 H, CH=CHCOOEt, CHAr).

13C NMR (150 MHz, CDCl3): δ = 14.1 (CH3), 59.8 (NCHCH), 60.6 (CH2), 64.5 (NCHPh), 80.7 (COH), 123.7 (2 C, CHAr), 125.8 (2 C, CHAr), 126.1 (CHAr), 126.7 (CHCOOEt), 128.2 (CHAr), 128.4 (2 C, CHAr), 128.5 (2 C, CHAr), 128.8 (2 C, CHAr), 129.1 (2 C, CHAr), 134.0 (C), 135.8 (C), 136.8 (C), 139.3 (CH=CHCOOEt), 140.2 (C), 165.4 (COOEt), 173.8 (NCO).

MS (EI, 70 eV): m/z (%) = 461 (23), 443 (34), 346 (23), 345 (18), 344 (48), 258 (18), 243 (25), 236 (21), 216 (29), 191 (17), 105 (100), 77 (60).

HRMS: m/z [M + H]+ calcd for C27H25NO4Cl: 462.1467; found: 462.1467.


#

Ethyl (E)-3-{(2S,3R,4R)-2-[4-(Dimethylamino)phenyl]-4-hydroxy-5-oxo-1,4-diphenylpyrrolidin-3-yl}acrylate (6d)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6d as a colorless solid; yield: 31 mg (20%); mp 89–91 °C; 89% ee [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.26 (n-pentane–EtOAc, 3:1); [α]D 22 +79.5 (c 1.0, CHCl3).

IR (ATR): 3356, 2981, 2919, 2805, 1699, 1611, 1522, 1451, 1364, 1172, 1124, 1038, 980, 868, 815, 749, 692 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.24 (t, J = 7.2 Hz, 3 H, CH3), 2.87 [s, 6 H, N(CH3)2], 2.97 (t, J = 9.0 Hz, 1 H, NCHCH), 3.40 (br s, 1 H, OH), 4.13 (q, J = 7.2 Hz, 2 H, CH2), 5.15 (d, J = 8.4 Hz, 1 H, NCHPh), 5.41 (d, J = 16.2 Hz, 1 H, CHCOOEt), 6.55 (m, 2 H, CHAr), 7.01 (d, J = 8.4 Hz, 2 H, CHAr), 7.09 (t, J = 7.2 Hz, 1 H, CHAr), 7.18 (dd, J = 9, 16.2 Hz, 1 H, CH=CHCOOEt), 7.22–7.33 (m, 5 H, CHAr), 7.39 (t, J = 7.8 Hz, 2 H, CHAr), 7.48 (d, J = 8.4 Hz, 2 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 14.2 (CH3), 40.3 [N(CH3)2], 59.6 (NCHCH), 60.4 (CH2), 64.9 (NCHPh), 80.9 (COH), 112.3 (2 C, CHAr), 124.1 (2 C, CHAr), 125.8 (CHAr), 125.9 (2 C, CHAr), 126.1 (CHCOOEt), 128.0 (2 C, CHAr), 128.1 (2 C, CHAr), 128.4 (2 C, CHAr), 128.5 (CHAr), 137.2 (2 C, C), 140.2 (CH=CHCOOEt), 140.9 (2 C, C), 165.6 (COOEt), 173.8 (NCO).

MS (EI, 70 eV): m/z (%) = 471 (20), 470 (61), 401 (14), 400 (53), 267 (17), 252 (23), 245 (19), 225 (31), 224 (100), 222 (47), 176 (26), 175 (22), 174 (10), 172 (17), 134 (53), 121 (11), 105 (44), 77 (24).

HRMS: m/z [M + H]+ calcd for C29H31N2O4: 471.2278; found: 471.2278.


#

Ethyl (E)-3-[(2S,3R,4R)-4-Hydroxy-2-(4-nitrophenyl)-5-oxo-1,4-diphenylpyrrolidin-3-yl]acrylate (6e)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6e as a colorless solid; yield: 33 mg (21%); mp 98–100 °C; 86% ee [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.23 (n-pentane–EtOAc, 3:1); [α]D 22 +114.5 (c 0.25, CHCl3).

IR (ATR): 3365, 3071, 2929, 1701, 1599, 1520, 1449, 1346, 1248, 1173, 1109, 1130, 979, 855, 796, 748, 691 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.25 (t, J = 7.2 Hz, 3 H, CH3), 2.85 (t, J = 9.0 Hz, 1 H, NCHCH), 3.56 (br s, 1 H, OH), 4.15 (q, J = 7.2 Hz, 2 H, CH2), 5.34 (d, J = 15.6 Hz, 1 H, CHCOOEt), 5.39 (d, J = 8.4 Hz, 1 H, NCHPh), 7.14 (t, J = 7.8 Hz, 1 H, CHAr), 7.18 (dd, J = 9.6, 15.6 Hz, 1 H, CH=CHCOOEt), 7.26–7.46 (m, 11 H, CHAr), 8.11 (d, J = 9.0 Hz, 2 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 14.1 (CH3), 59.8 (NCHCH), 60.7 (CH2), 64.4 (NCHPh), 80.7 (COH), 123.4 (2 C, CHAr), 124.2 (2 C, CHAr), 125.8 (2 C, CHAr), 126.4 (CHAr), 127.2 (CHCOOEt), 127.9 (2 C, CHAr), 128.5 (CHAr), 128.6 (2 C, CHAr), 129.0 (2 C, CHAr), 136.5 (C), 138.6 (CH=CHCOOEt), 139.8 (C), 144.7 (C), 147.7 (C), 165.2 (COOEt), 173.7 (NCO).

MS (EI, 70 eV): m/z (%) = 473 (14), 472 (51), 455 (28), 454 (89), 437 (24), 357 (15), 355 (16), 339 (13), 248 (25), 227 (62), 226 (30), 225 (100), 220 (13), 202 (42), 105 (79).

HRMS: m/z [M + H]+ calcd for C27H25N2O6: 473.1707; found: 473.1708.


#

Ethyl (E)-3-{(2S,3R,4R)-4-Hydroxy-5-oxo-1,4-diphenyl-2-[3,4,5-tris(benzyloxy)phenyl]pyrrolidin-3-yl}acrylate (6f)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6f as a colorless solid; yield: 144 mg (52%); mp 55–57 °C; 82% ee [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.33 (n-pentane–EtOAc, 3:1); [α]D 22 +94.5 (c 1.0, CHCl3).

IR (ATR): 3362, 3063, 3032, 1702, 1592, 1497, 1441, 1372, 1309, 1242, 1216, 1166, 1103, 1029, 978, 908, 836, 792, 739, 693 cm–1.

1H NMR (600 MHz, DMSO-d 6): δ = 1.26 (t, J = 7.2 Hz, 3 H, CH3), 2.90 (t, J = 8.4 Hz, 1 H, NCHCH), 4.04 (q, J = 7.2 Hz, 2 H, CH 2CH3), 4.77 (m, 2 H, CH 2Ph), 4.95 (d, J = 12 Hz, 2 H, CH 2Ph), 5.05 (d, J = 12.6 Hz, 2 H, CH 2Ph), 5.26 (d, J = 15.6 Hz, 1 H, CHCOOEt), 5.36 (d, J = 16.2 Hz, 1 H, NCHPh), 6.75 (s, 2 H, CHAr), 6.81 (s, 1 H, CHAr), 7.00 (dd, J = 8.4, 15.6 Hz, 1 H, CH=CHCOOEt), 7.10 (m, 1 H, CHAr), 7.20–7.49 (m, 23 H, CHAr).

13C NMR (150 MHz, DMSO-d 6): δ = 14.4 (CH3), 59.3 (NCHCH), 60.4 (CH2CH3), 64.0 (NCHPh), 70.6 (2 C, CH2Ph), 74.3 (CH2Ph), 80.4 (COH), 107.7 (CHAr), 124.7 (2 C, CHAr), 125.4 (CHCOOEt), 125.9 (CHAr), 126.9 (2 C, CHAr), 127.9 (CHAr), 128.0 (4 C, CHAr), 128.1 (2 C, CHAr), 128.2 (2 C, CHAr), 128.4 (2 C, CHAr), 128.5 (2 C, CHAr), 128.7 (2 C, CHAr), 128.8 (4 C, CHAr), 133.7 (C), 137.1 (C), 137.4 (2 C, C), 137.9 (C), 138.0 (C), 141.6 (C), 141.9 (CH=CHCOOEt), 152.3 (2 C, C), 165.2 (COOEt), 173.2 (NCO).

MS (EI, 70 eV): m/z (%) = 746 (18), 546 (10), 391 (18), 390 (100), 363 (68), 282 (15), 241 (11), 227 (55), 181 (34).

HRMS: m/z [M + H]+ calcd for C48H44NO7: 746.3112; found: 746.3130.


#

Ethyl (E)-3-[(2S,3R,4R)-2-(1,3-Benzodioxol-5-yl)-4-hydroxy-5-oxo-1,4-diphenylpyrrolidin-3-yl]acrylate (6g)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6g as a colorless solid; yield: 87 mg (56%); mp 98–100 °C; 89% ee [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.32 (n-pentane–EtOAc, 3:1); [α]D 22 +118.0 (c 0.75, CHCl3).

IR (ATR): 3363, 2898, 1702, 1596, 1494, 1447, 1373, 1304, 1245, 1175, 1116, 1034, 981, 927, 869, 785, 749, 693 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.26 (t, J = 7.2 Hz, 3 H, CH3), 2.91 (t, J = 8.4 Hz, 1 H, NCHCH), 3.22 (br s, 1 H, OH), 4.15 (q, J = 7.2 Hz, 2 H, CH2), 5.16 (d, J = 8.4 Hz, 1 H, NCHPh), 5.41 (d, J = 16.2 Hz, 1 H, CHCOOEt), 5.89 (s, 2 H, CH2), 6.62 (s, 1 H, CHAr), 6.65 (s, 2 H, CHAr), 7.13 (t, J = 7.8 Hz, 1 H, CHAr), 7.19 (dd, J = 9.0, 16.2 Hz, 1 H, CH=CHCOOEt), 7.26–7.47 (m, 9 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 14.2 (CH3), 59.7 (NCHCH), 60.5 (CH2), 65.0 (NCHPh), 80.8 (COH), 101.2 (CH2), 106.7 (CHAr), 108.3 (CHAr), 121.4 (CHAr), 123.9 (2 C, CHAr), 125.8 (2 C, CHAr), 126.0 (CHAr), 126.5 (CHCOOEt), 128.2 (CHAr), 128.5 (2 C, CHAr), 128.7 (2 C, CHAr), 130.9 (C), 136.9 (C), 139.6 (CHCOOEt), 140.5 (C), 147.5 (C), 148.2 (C), 165.5 (COOEt), 173.7 (NCO).

MS (EI, 70 eV): m/z (%) = 471 (25), 454 (19), 453 (59), 380 (18), 379 (27), 246 (28), 226 (100), 225 (92), 224 (55), 201 (38), 172 (47), 144 (27), 135 (81), 115 (35), 105 (96), 77 (44).

HRMS: m/z [M + H]+ calcd for C28H26NO6: 422.1755; found: 472.1757.


#

Ethyl (E)-3-[(2S,3R,4R)-2-(Furan-2-yl)-4-hydroxy-5-oxo-1,4-diphenylpyrrolidin-3-yl]acrylate (6h)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6h as a colorless solid; yield: 70 mg (51%); mp 62–65 °C; 60% ee [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.35 (n-pentane–EtOAc, 3:1); [α]D 22 +32.7 (c 0.49, CHCl3).

IR (ATR): 3358, 3063, 2982, 1697, 1596, 1547, 1495, 1448, 1375, 1304, 1247, 1175, 1122, 1070, 1015, 979, 923, 880, 839, 743, 693 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.24 (t, J = 7.2 Hz, 3 H, CH3), 3.39 (t, J = 8.4 Hz, 1 H, NCHCH), 3.54 (br s, 1 H, OH), 4.14 (q, J = 7.2 Hz, 2 H, CH2), 5.21 (d, J = 8.4 Hz, 1 H, NCHPh), 5.55 (d, J = 16.2 Hz, 1 H, CHCOOEt), 6.19–6.22 (m, 2 H, CHAr), 7.13 (dd, J = 8.4, 16.2 Hz, 1 H, CH=CHCOOEt), 7.18–7.21 (m, 3 H, CHAr), 7.29–7.47 (m, 8 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 14.1 (CH3), 54.8 (NCHCH), 59.4 (NCHPh), 60.5 (CH2), 80.3 (COH), 110.4 (CHAr), 111.4 (CHAr), 124.9 (2 C, CHAr), 125.9 (2 C, CHAr), 126.1 (CHCOOEt), 126.9 (CHAr), 128.2 (CHAr), 128.4 (2 C, CHAr), 128.8 (2 C, CHAr), 136.7 (C), 139.8 (CH=CHCOOEt), 140.3 (C), 143.2 (CHAr), 148.6 (C), 165.5 (COOEt), 173.3 (NCO).

MS (EI, 70 eV): m/z (%) = 419 (18), 418 (32), 417 (23), 401 (27), 400 (100), 399 (85), 354 (12), 353 (10), 324 (17), 301 (22), 299 (13), 193 (23), 192 (51), 191 (33), 173 (25), 172 (31), 171 (21), 170 (11).

HRMS: m/z [M + H]+ calcd for C25H24NO5: 418.1649; found: 418.1650.


#

tert-Butyl 3-{(2S,3R,4R)-3-[(E)-3-Ethoxy-3-oxoprop-1-enyl]-4-hydroxy-5-oxo-1,4-diphenylpyrrolidin-2-yl}-1H-indole-1-carboxylate (6i)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6i as a colorless solid; yield: 110 mg (59%); mp 110–115 °C; 81% ee (88%) [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.4 (n-pentane–EtOAc, 3:1); [α]D 22 +68.2 (c 0.51, CHCl3).

IR (ATR): 3379, 2980, 1710, 1602, 1456, 1364, 1253, 1154, 1084, 1032, 981, 849, 749, 696 cm–1.

1H NMR (600 MHz, C6D6): δ = 1.23 (t, J = 7.2 Hz, 3 H, CH3), 1.64 (s, 9 H, CH3), 3.78 (t, J = 8.4 Hz, 1 H, NCHCH), 4.13 (br s, 1 H, OH), 4.13 (q, J = 7.2 Hz, 2 H, CH2), 5.40 (d, J = 15.6 Hz, 1 H, CHCOOEt), 5.43 (d, J = 8.4 Hz, 1 H, NCHPh), 7.10 (t, 1 H, CHAr), 7.18–7.27 (m, 5 H, CHAr), 7.38–7.42 (m, 5 H, CHAr), 7.47 (br s, 1 H, CHAr), 7.51 (d, J = 7.2 Hz, 2 H, CHAr), 7.57 (d, J = 7.8 Hz, 1 H, CHAr), 8.02 (br s, 1 H, CHAr).

13C NMR (150 MHz, DMSO-d 6): δ = 14.4 (CH3), 28.0 [3 C, C(CH3)3], 56.2 (NCHCH), 57.4 (NCHPh), 60.4 (CH2), 80.5 (COH), 84.7 [C(CH3)3], 115.6 (CHAr), 116.7 (C), 120.0 (CHAr), 123.4 (CHAr), 124.2 (2 C, CHAr), 124.9 (CHAr), 125.5 (CHCOOEt), 125.9 (CHAr), 126.1 (CHAr), 126.7 (2 C, CHAr), 126.9 (C), 127.9 (CHAr), 128.4 (2 C, CHAr), 128.6 (2 C, CHAr), 135.4 (C), 137.8 (C), 141.6 (C), 142.2 (CH=CHCOOEt), 149.2 (COOt-Bu), 165.2 (COOEt), 172.9 (NCO).

MS (EI, 70 eV): m/z (%) = 566 (43), 466 (29), 449 (23), 448 (100), 249 (21), 220 (16).

HRMS: m/z [M + H]+ calcd for C34H35N2O6: 567.2489; found: 567.2488.


#

Ethyl (E)-3-[(2S,3R,4R)-4-Hydroxy-1-(2-iodophenyl)-5-oxo-2,4-diphenylpyrrolidin-3-yl]acrylate (6j)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6j as a colorless solid; yield: 80 mg (44%); mp 92–95 °C; 88% ee (95%) [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.28 (n-pentane–EtOAc, 3:1); [α]D 22 +4.0 (c 1.0, CHCl3).

IR (ATR): 3366, 2980, 2176, 2113, 1707, 1581, 1470, 1373, 1306, 1252, 1174, 1119, 1029, 980, 913, 869, 803, 748, 699 cm–1.

1H NMR (600 MHz, DMSO-d 6): δ = 1.11 (t, J = 7.2 Hz, 3 H, CH3), 3.19 (t, J = 8.4 Hz, 1 H, NCHCH), 4.00 (q, J = 7.2 Hz, 2 H, CH2), 5.39 (d, J = 15.6 Hz, 1 H, CHCOOEt), 5.54 (d, J = 9.6 Hz, 1 H, NCHPh), 6.91 (m, 2 H, CHAr), 7.00 (dd, J = 9.0, 15.6 Hz, 1 H, CH=CHCOOEt), 7.16 (m, 1 H, CHAr), 7.22 (m, 3 H, CHAr), 7.32 (m, 2 H, CHAr), 7.41 (m, 2 H, CHAr), 7.47 (m, 2 H, CHAr), 7.58 (m, 2 H, CHAr), 7.77 (d, J = 7.8 Hz, 1 H, CHAr).

13C NMR (150 MHz, DMSO-d 6): δ = 14.4 (CH3), 59.5 (NCHCH), 60.5 (CH2), 65.3 (NCHPh), 80.1 (COH), 100.1 (C), 125.4 (CHCOOEt), 126.7 (2 C, CHAr), 126.9 (CHAr), 127.9 (CHAr), 128.3 (2 C, CHAr), 128.7 (2 C, CHAr), 128.8 (CHAr), 128.9 (2 C, CHAr), 129.1 (CHAr), 129.2 (CHAr), 137.6 (C), 139.8 (CHAr), 140.8 (C), 141.7 (CH=CHCOOEt), 141.9 (C), 165.2 (COOEt), 171.8 (NCO).

MS (EI, 70 eV): m/z (%) = 553 (6), 536 (13), 427 (26), 426 (92), 424 (17), 308 (30), 224 (33), 203 (19), 202 (30), 180 (17), 157 (27), 144 (10), 129 (28), 128 (16), 105 (100), 77 (31).

Anal. Calcd for C27H24INO4: C, 58.60; H, 4.37; N, 2.53. Found: C, 58.59; H, 4.09; N, 2.37.


#

Ethyl (E)-3-[(2S,3R,4R)-4-Hydroxy-1-(4-methoxyphenyl)-5-oxo-2,4-diphenylpyrrolidin-3-yl]acrylate (6k)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6k as a colorless solid; yield: 86 mg (60%); mp 77–79 °C; 81% ee (89%) [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.21 (n-pentane–EtOAc, 3:1); [α]D 22 +102.0 (c 0.5, CHCl3).

IR (ATR): 3356, 2974, 1695, 1510, 1453, 1375, 1293, 1243, 1173, 1114, 1030, 981, 832, 795, 751, 697 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.24 (t, J = 7.2 Hz, 3 H, CH3), 2.95 (t, J = 8.4 Hz, 1 H, NCHCH), 3.34 (br s, 1 H, OH), 3.72 (s, 3 H, OCH3), 4.14 (q, J = 7.2 Hz, 2 H, CH2), 5.18 (d, J = 8.4 Hz, 1 H, NCHPh), 5.37 (d, J = 15.6 Hz, 1 H, CHCOOEt), 6.76 (d, J = 9.0 Hz, 2 H, CHAr), 7.16–7.40 (m, 11 H, CHAr, CH=CHCOOEt), 7.47 (d, J = 7.8 Hz, 2 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 14.1 (CH3), 55.3 (OCH3), 59.6 (NCHCH), 60.5 (CH2), 65.6 (NCHPh), 80.8 (COH), 114.0 (2 C, CHAr), 125.4 (2 C, CHAr), 125.8 (2 C, CHAr), 126.3 (CHCOOEt), 127.3 (2 C, CHAr), 128.2 (CHAr), 128.3 (CHAr), 128.5 (2 C, CHAr), 128.8 (2 C, CHAr), 129.9 (C), 137.2 (C), 139.8 (CH=CHCOOEt), 140.7 (C), 157.5 (C), 165.5 (COOEt), 173.8 (NCO).

MS (EI, 70 eV): m/z (%) = 458 (17), 457 (100), 456 (36), 340 (12), 256 (16), 255 (16), 213 (12), 212 (36), 211 (34), 210 (14), 197 (15), 196 (17).

HRMS: m/z [M + H]+ calcd for C28H28NO5: 458.1962; found: 458.1962.


#

Ethyl (E)-3-[(2S,3R,4R)-4-(2,4-Dimethoxyphenyl)-4-hydroxy-5-oxo-1,2-diphenylpyrrolidin-3-yl]acrylate (6l)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6l as a colorless solid; yield: 87 mg (69%); mp 85–87 °C; 90% ee [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.12 (n-pentane–EtOAc, 3:1); [α]D 22 +77.6 (c 0.54, CHCl3).

IR (ATR): 3355, 2972, 1706, 1603, 1497, 1373, 1273, 1208, 1159, 1033, 976, 913, 831, 749, 696 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.23 (t, J = 7.2 Hz, 3 H, CH3), 3.14 (br s, 1 H, OH), 3.28 (t, J = 9.0 Hz, 1 H, NCHCH), 3.82 (s, 3 H, OCH3), 3.98 (s, 3 H, OCH3), 4.13 (q, J = 7.2 Hz, 2 H, CH2), 5.22 (d, J = 8.4 Hz, 1 H, NCHPh), 5.39 (d, J = 15.6 Hz, 1 H, CHCOOEt), 6.51 (dd, J = 2.4, 9.0 Hz, 1 H, CHAr), 6.54 (d, J = 2.4 Hz, 1 H, CHAr), 7.05 (t, J = 7.2 Hz, 1 H, CHAr), 7.13 (dd, J = 9.0, 16.2 Hz, 1 H, CH=CHCOOEt), 7.16–7.25 (m, 7 H, CHAr), 7.31 (d, J = 7.8 Hz, 2 H, CHAr), 7.45 (d, J = 8.4 Hz, 1 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 14.2 (CH3), 55.4 (OCH3), 55.8 (NCHCH), 55.8 (OCH3), 60.4 (CH2), 65.3 (NCHPh), 79.4 (COH), 99.5 (CHAr), 104.5 (CHAr), 121.3 (C), 123.6 (2 C, CHAr), 125.3 (CHAr), 125.8 (CHCOOEt), 127.3 (2 C, CHAr), 127.9 (CHAr), 128.0 (CHAr), 128.5 (2 C, CHAr), 128.7 (2 C, CHAr), 137.4 (C), 138.3 (C), 141.1 (CH=CHCOOEt), 156.4 (C), 161.0 (C), 165.7 (COOEt), 174.3 (NCO).

MS (EI, 70 eV): m/z (%) = 469 (16), 468 (12), 286 (21), 285 (20), 284 (13), 166 (100), 165 (70), 164 (77).

Anal. Calcd for C29H29NO6: C, 71.44; H, 6.00; N, 2.87. Found: C, 70.94; H, 6.11; N, 2.73.


#

Ethyl (E)-3-[(2S,3R,4R)-4-Hydroxy-5-oxo-1,2-diphenyl-4-(2-tolyl)pyrrolidin-3-yl]acrylate (6m)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6m as a colorless solid; yield: 107 mg (73%); mp 72–75 °C; 93% ee [chiral stationary phase HPLC (Daicel AS)]; Rf  = 0.38 (n-pentane–EtOAc, 3:1); [α]D 22 +109.6 (c 0.5, CHCl3).

IR (ATR): 3363, 2916, 1697, 1597, 1495, 1454, 1373, 1277, 1249, 1219, 1170, 1120, 1084, 1032, 981, 905, 870, 766, 694 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.24 (t, J = 7.2 Hz, 3 H, CH3), 2.37 (s, 3 H, CH3), 2.95 (t, J = 8.4 Hz, 1 H, NCHCH), 3.49 (br s, 1 H, OH), 4.13 (m, 2 H, CH2), 5.23 (d, J = 8.4 Hz, 1 H, NCHPh), 5.37 (d, J = 16.2 Hz, 1 H, CHCOOEt), 7.07–7.33 (m, 15 H, CHAr, CH=CHCOOEt).

13C NMR (150 MHz, CDCl3): δ = 14.1 (CH2 CH3), 21.6 (ArCH3), 59.7 (NCHCH), 60.5 (CH2), 65.1 (NCHPh), 80.8 (COH), 122.9 (CHAr), 123.8 (2 C, CHAr), 125.9 (CHAr), 126.3 (CHCOOEt), 126.4 (CHAr), 127.1 (2 C, CHAr), 128.2 (CHAr), 128.3 (CHAr), 128.6 (2 C, CHAr), 128.8 (2 C, CHAr), 129.0 (CHAr), 137.0 (C), 137.3 (C), 138.0 (C), 139.8 (CH=CHCOOEt), 140.5 (C), 165.5 (COOEt), 173.9 (NCO).

MS (EI, 70 eV): m/z (%) = 441 (27), 423 (24), 203 (19), 202 (49), 182 (49), 157 (23), 129 (23), 119 (100), 91 (15).

HRMS: m/z [M + Na]+ calcd for C28H27NO4Na: 464.1832; found: 464.1832.


#

Ethyl (E)-3-[(2S,3R,4R)-4-Hydroxy-5-oxo-2,4-diphenyl-1-tosylpyrrolidin-3-yl]acrylate (6n)

Following the general procedure with purification by flash chromatography (n-pentane–EtOAc, 3:1) gave 6n as a colorless solid; yield: 55 mg (33%); mp 72–75 °C; 96% [chiral stationary phase HPLC (Daicel AS)], Rf  = 0.36 (n-pentane–EtOAc, 3:1); [α]D 22 +14.0 (c 0.5, CHCl3).

IR (ATR): 3413, 2982, 2307, 2173, 1716, 1656, 1597, 1492, 1453, 1365, 1308, 1170, 1087, 1034, 980, 868, 803, 751, 700, 662 cm–1.

1H NMR (600 MHz, CDCl3): δ = 1.23 (t, J = 7.2 Hz, 3 H, CH2CH 3), 2.44 (s, 3 H, ArCH 3), 2.91 (t, J = 8.4 Hz, 1 H, NCHCH), 3.00 (br s, 1 H, OH), 4.12 (m, 2 H, CH2), 5.20 (d, J = 8.4 Hz, 1 H, NCHPh), 5.33 (d, J = 16.2 Hz, 1 H, CHCOOEt), 7.01 (dd, J = 9, 15.6 Hz, 1 H, CH=CHCOOEt), 7.24–7.35 (m, 12 H, CHAr), 7.73 (d, J = 8.4 Hz, 2 H, CHAr).

13C NMR (150 MHz, CDCl3): δ = 14.1 (CH2 CH3), 21.7 (ArCH3), 58.9 (NCHCH), 60.6 (CH2), 65.1 (NCHPh), 80.6 (COH), 125.7 (2 C, CHAr), 126.8 (2 C, CHAr), 127.1 (CHCOOEt), 128.5 (CHAr), 128.6 (2 C, CHAr), 128.6 (2 C, CHAr), 128.7 (CHAr), 128.8 (2 C, CHAr), 129.4 (2 C, CHAr), 134.7 (C), 137.9 (CH=CHCOOEt), 138.0 (C), 138.0 (C), 145.4 (C), 165.2 (COOEt), 173.1 (NCO).

MS (ESI): m/z = 544 ([M + K]+), 506 ([M + H]+).

HRMS: m/z [M + H]+ calcd for C28H28NO6S: 506.1632; found: 506.1625.


#
#

Acknowledgment

We thank the former Degussa AG and BASF SE for the donation of the chemicals. D.E. thanks the European Research Council for an ERC Advanced Grant (DOMINOCAT).

Supporting Information

  • References

    • 1a Omura S, Fujimoto T, Otoguro K, Matsuzaki K, Moriguchi R, Tanaka H, Sasaki Y. J. Antibiot. 1991; 44: 113
    • 1b Corey EJ, Reichard GA. J. Am. Chem. Soc. 1992; 114: 10677
    • 2a Yang M.-H, Chen Y.-Y, Huang L. Phytochemistry 1988; 24: 445
    • 2b Hartwig W, Born L. J. Org. Chem. 1987; 52: 4352
    • 3a Schneider HH, Schmiechen R, Brezinski M, Seidler J. Eur. J. Pharmacol. 1986; 127: 105
    • 3b Mulzer J, Zuhse R, Schmiechen R. Angew. Chem., Int. Ed. Engl. 1992; 31: 870
    • 3c Meyers AI, Snyder L. J. Org. Chem. 1993; 58: 36
  • 4 Dwoskin LP, Teng L, Buxton ST, Crooks PA. J. Pharmacol. Exp. Ther. 1999; 288: 905
  • 5 Reichard GA, Paliwal S, Shih N.-Y, Xiao D, Tsui H.-C, Shah S, Wang C, Wrobleski ML. WO 2003,042,173, 2003
  • 6 Winn M, Boyd SA, Hutchins CW, Hwan-Soo J, Tasker AS, Von Geldern TW, Kester J, Sorensen BK, Szszepankiewicz BG, Henry KJ, Lui G, Wittenberger SJ, King SA, Janus TJ, Padley RJ. WO 2002,017,912, 2002

    • Via cyclization:
    • 7a Hashmi AS. K, Yang W, Yu Y, Hansmann MM, Rudolph M, Rominger F. Angew. Chem. Int. Ed. 2013; 52: 1329

    • Via cycloaddition:
    • 7b Roberson C, Woerpel KA. J. Org. Chem. 1999; 64: 1434
    • 7c Candeias NR, Gois PM. P, Afonso CA. M. J. Org. Chem. 2006; 71: 5489
    • 7d Basavaiah D, Rao JS. Tetrahedron Lett. 2004; 45: 1621

    • Via ring expansion:
    • 7e Rai VK, Rai PK, Bajaj S, Kumar A. Green Chem. 2011; 13: 1217
    • 7f Choi HG, Park D.-S, Lee WK, Sim T. Tetrahedron Lett. 2013; 54: 5775

    • Via ring contraction:
    • 7g Brown GR, Foubister AJ, Wright B. J. Chem. Soc., Chem. Commun. 1984; 1373

    • Via multicomponent reactions:
    • 7h Pelletier SM. C, Ray PC, Dixon DJ. Org. Lett. 2009; 11: 4512
    • 7i Younai A, Chin GF, Shaw JT. J. Org. Chem. 2010; 75: 8333
    • 7j He M, Rommel M, Bode JW. Heterocycles 2012; 86: 1689

      For typical examples, see:
    • 8a Anderson JC, Horsfall LR, Kalogirou AS, Mills MS, Stepney GJ, Tizzard GJ. J. Org. Chem. 2012; 77: 6186
    • 8b Clayden J, Watson DW, Helliwell M, Chambers M. Chem. Commun. 2003; 2582

      For selected examples, see:
    • 9a Yang L, Wang D.-X, Huang Z.-T, Wang M.-X. J. Am. Chem. Soc. 2009; 131: 10390
    • 9b Bhagwat SS, Gude C, Chan K. Tetrahedron Lett. 1996; 37: 4627

      For selected general reviews, see:
    • 10a Berkessel A, Gröger H. Asymmetric Organocatalysis . Wiley-VCH; Weinheim: 2005
    • 10b Dalko PI. Enantioselective Organocatalysis . Wiley-VCH; Weinheim: 2007
    • 10c Special issue, List, B., Ed.; Chem. Rev. 2007, 107, 5413.
    • 10d Vicario JL, Badia D, Carillo L. Synthesis 2007; 2065
    • 10e Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701
    • 10f Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
    • 10g MacMillan DW. C. Nature (London) 2008; 455: 304
    • 10h Barbas III CF. Angew. Chem. Int. Ed. 2008; 47: 42
    • 10i Enders D, Narine AA. J. Org. Chem. 2008; 73: 7857
    • 10j Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 10k Jørgensen KA, Bertelsen S. Chem. Soc. Rev. 2009; 38: 2178
    • 10l Bella M, Gasperi T. Synthesis 2009; 1583
    • 10m Roca-Lopez D, Sadaba D, Delso I, Herrera RP, Tejero T, Merino P. Tetrahedron: Asymmetry 2010; 21: 2561
    • 10n Marcelli T, Hiemstra H. Synthesis 2010; 1229
    • 10o Nielsen M, Worgull D, Zweifel T, Gschwend B, Bertelsen S, Jørgensen KA. Chem. Commun. 2011; 47: 632
    • 10p Ramachary DB, Jain S. Org. Biomol. Chem. 2011; 9: 1277
    • 10q Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
    • 10r Pellissier H. Tetrahedron 2012; 68: 2197
    • 10s Scheffler U, Mahrwald R. Chem. Eur. J. 2013; 19: 14346

      For selected reviews on organocatalytic domino reactions, see:
    • 11a Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 11b Pellissier H. Adv. Synth. Catal. 2012; 354: 237
    • 11c Enders D, Grossmann A. Angew. Chem. Int. Ed. 2012; 51: 314
    • 11d Jørgensen KA, Albrecht Ł, Jiang H. Angew. Chem. Int. Ed. 2011; 50: 8492
    • 11e Grondal C, Jeanty M, Enders D. Nature Chem. 2010; 2: 167
    • 11f Alba A.-N, Companyo X, Viciano M, Rios R. Curr. Org. Chem. 2009; 13: 1432
    • 11g Yu X, Wang W. Org. Biomol. Chem. 2008; 6: 2037
    • 11h Enders D, Grondal C, Hüttl M. Angew. Chem. Int. Ed. 2007; 46: 1570

      For examples of asymmetric secondary amine catalyzed simple domino reactions, see:
    • 12a Alexakis A, Lefranc A, Guénée L. Org. Lett. 2013; 15: 2172
    • 12b Lee H.-J, Cho C.-W. Eur. J. Org. Chem. 2013; in press; doi: 10.1002/ejoc.201301260
    • 12c Wu L, Wang Y, Song H, Tang L, Zhou Z, Tang C. Chem. Asian J. 2013; 8: 2204
    • 12d Zhang X, Song X, Li H, Zhang S, Chen X, Yu X, Wang W. Angew. Chem. Int. Ed. 2012; 51: 7282
    • 12e Wang C, Yang X, Raabe G, Enders D. Adv. Synth. Catal. 2012; 354: 2629
    • 12f Rueping M, Kuenkel A, Tato F, Bats JW. Angew. Chem. Int. Ed. 2009; 48: 3699
    • 12g Enders D, Wang C, Raabe G. Synthesis 2009; 4119
    • 12h Li H, Zu L, Xie H, Wang J, Wang W. Chem. Commun. 2008; 5636
    • 12i Wang W, Li H, Wang J, Zu L. J. Am. Chem. Soc. 2006; 128: 10354
    • 12j Bui T, Barbas III CF. Tetrahedron Lett. 2000; 41: 6951

      For examples of asymmetric secondary amine catalyzed triple domino reactions, see:
    • 13a Dong L.-J, Fan T.-T, Wang C, Sun J. Org. Lett. 2013; 15: 204
    • 13b Enders D, Joie C, Deckers K. Chem. Eur. J. 2013; 19: 10818
    • 13c Chatterjee I, Bastida D, Melchiorre P. Adv. Synth. Catal. 2013; 355: 3124
    • 13d Jiang K, Jia ZJ, Chen S, Wu L, Chen YC. Chem. Eur. J. 2010; 16: 2852
    • 13e Urushima T, Sakamoto D, Ishikawa H, Hayashi Y. Org. Lett. 2010; 12: 4588
    • 13f Bencivenni G, Wu LY, Mazzanti A, Giannichi B, Pesciaioli F, Song MP, Bartoli G, Melchiorre P. Angew. Chem. Int. Ed. 2009; 48: 7200
    • 13g Enders D, Hüttl MR. M, Raabe G, Bats JW. Adv. Synth. Catal. 2008; 350: 267
    • 13h Carlone A, Cabrera S, Marigo M, Jorgensen KA. Angew. Chem. Int. Ed. 2007; 46: 1101
    • 13i Enders D, Hüttl MR. M, Grondal C, Raabe G. Nature (London) 2006; 441: 861

      For examples of asymmetric secondary amine catalyzed quadruple domino reactions, see:
    • 14a Zeng X, Ni Q, Raabe G, Enders D. Angew. Chem. Int. Ed. 2013; 52: 2977
    • 14b Erdmann N, Philipps AR, Atodiresei I, Enders D. Adv. Synth. Catal. 2013; 355: 847
    • 14c Enders D, Greb A, Deckers K, Selig P, Merkens C. Chem. Eur. J. 2012; 18: 10226
    • 14d Rueping M, Haack K, Ieasuwan W, Sundén H, Blanco M, Shoepke FR. Chem. Commun. 2011; 47: 3828
    • 14e Krüll R, Bettray W, Enders D. Synthesis 2010; 567
    • 14f Wang C, Mukanova M, Greb A, Enders D. Chem. Commun. 2010; 46: 2477
    • 14g Jiang K, Jia Z.-J, Yin X, Wu L, Chen YC. Org. Lett. 2010; 12: 2766
    • 14h Zhang F.-L, Xu A.-W, Gong Y.-F, Wei M.-H, Yang X.-L. Chem. Eur. J. 2009; 15: 6815
    • 14i Kotame P, Hong B.-C, Liao J.-H. Tetrahedron Lett. 2009; 50: 704

      For reviews on organocatalytic asymmetric aza-Michael reactions, see:
    • 15a Kwong FY, Wang J, Li P, Choy PY, Chan AS. C. ChemCatChem 2012; 4: 917
    • 15b Enders D, Wang C, Liebich JX. Chem. Eur. J. 2009; 15: 11058
    • 15c Krishna PR, Sreeshailam A, Srinivas R. Tetrahedron 2009; 65: 9657
  • 16 Baslé O, Raimondi W, Sanchez Duque MM, Bonne D, Constantieux T, Rodriguez J. Org. Lett. 2010; 12: 5246

  • References

    • 1a Omura S, Fujimoto T, Otoguro K, Matsuzaki K, Moriguchi R, Tanaka H, Sasaki Y. J. Antibiot. 1991; 44: 113
    • 1b Corey EJ, Reichard GA. J. Am. Chem. Soc. 1992; 114: 10677
    • 2a Yang M.-H, Chen Y.-Y, Huang L. Phytochemistry 1988; 24: 445
    • 2b Hartwig W, Born L. J. Org. Chem. 1987; 52: 4352
    • 3a Schneider HH, Schmiechen R, Brezinski M, Seidler J. Eur. J. Pharmacol. 1986; 127: 105
    • 3b Mulzer J, Zuhse R, Schmiechen R. Angew. Chem., Int. Ed. Engl. 1992; 31: 870
    • 3c Meyers AI, Snyder L. J. Org. Chem. 1993; 58: 36
  • 4 Dwoskin LP, Teng L, Buxton ST, Crooks PA. J. Pharmacol. Exp. Ther. 1999; 288: 905
  • 5 Reichard GA, Paliwal S, Shih N.-Y, Xiao D, Tsui H.-C, Shah S, Wang C, Wrobleski ML. WO 2003,042,173, 2003
  • 6 Winn M, Boyd SA, Hutchins CW, Hwan-Soo J, Tasker AS, Von Geldern TW, Kester J, Sorensen BK, Szszepankiewicz BG, Henry KJ, Lui G, Wittenberger SJ, King SA, Janus TJ, Padley RJ. WO 2002,017,912, 2002

    • Via cyclization:
    • 7a Hashmi AS. K, Yang W, Yu Y, Hansmann MM, Rudolph M, Rominger F. Angew. Chem. Int. Ed. 2013; 52: 1329

    • Via cycloaddition:
    • 7b Roberson C, Woerpel KA. J. Org. Chem. 1999; 64: 1434
    • 7c Candeias NR, Gois PM. P, Afonso CA. M. J. Org. Chem. 2006; 71: 5489
    • 7d Basavaiah D, Rao JS. Tetrahedron Lett. 2004; 45: 1621

    • Via ring expansion:
    • 7e Rai VK, Rai PK, Bajaj S, Kumar A. Green Chem. 2011; 13: 1217
    • 7f Choi HG, Park D.-S, Lee WK, Sim T. Tetrahedron Lett. 2013; 54: 5775

    • Via ring contraction:
    • 7g Brown GR, Foubister AJ, Wright B. J. Chem. Soc., Chem. Commun. 1984; 1373

    • Via multicomponent reactions:
    • 7h Pelletier SM. C, Ray PC, Dixon DJ. Org. Lett. 2009; 11: 4512
    • 7i Younai A, Chin GF, Shaw JT. J. Org. Chem. 2010; 75: 8333
    • 7j He M, Rommel M, Bode JW. Heterocycles 2012; 86: 1689

      For typical examples, see:
    • 8a Anderson JC, Horsfall LR, Kalogirou AS, Mills MS, Stepney GJ, Tizzard GJ. J. Org. Chem. 2012; 77: 6186
    • 8b Clayden J, Watson DW, Helliwell M, Chambers M. Chem. Commun. 2003; 2582

      For selected examples, see:
    • 9a Yang L, Wang D.-X, Huang Z.-T, Wang M.-X. J. Am. Chem. Soc. 2009; 131: 10390
    • 9b Bhagwat SS, Gude C, Chan K. Tetrahedron Lett. 1996; 37: 4627

      For selected general reviews, see:
    • 10a Berkessel A, Gröger H. Asymmetric Organocatalysis . Wiley-VCH; Weinheim: 2005
    • 10b Dalko PI. Enantioselective Organocatalysis . Wiley-VCH; Weinheim: 2007
    • 10c Special issue, List, B., Ed.; Chem. Rev. 2007, 107, 5413.
    • 10d Vicario JL, Badia D, Carillo L. Synthesis 2007; 2065
    • 10e Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701
    • 10f Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
    • 10g MacMillan DW. C. Nature (London) 2008; 455: 304
    • 10h Barbas III CF. Angew. Chem. Int. Ed. 2008; 47: 42
    • 10i Enders D, Narine AA. J. Org. Chem. 2008; 73: 7857
    • 10j Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 10k Jørgensen KA, Bertelsen S. Chem. Soc. Rev. 2009; 38: 2178
    • 10l Bella M, Gasperi T. Synthesis 2009; 1583
    • 10m Roca-Lopez D, Sadaba D, Delso I, Herrera RP, Tejero T, Merino P. Tetrahedron: Asymmetry 2010; 21: 2561
    • 10n Marcelli T, Hiemstra H. Synthesis 2010; 1229
    • 10o Nielsen M, Worgull D, Zweifel T, Gschwend B, Bertelsen S, Jørgensen KA. Chem. Commun. 2011; 47: 632
    • 10p Ramachary DB, Jain S. Org. Biomol. Chem. 2011; 9: 1277
    • 10q Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
    • 10r Pellissier H. Tetrahedron 2012; 68: 2197
    • 10s Scheffler U, Mahrwald R. Chem. Eur. J. 2013; 19: 14346

      For selected reviews on organocatalytic domino reactions, see:
    • 11a Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 11b Pellissier H. Adv. Synth. Catal. 2012; 354: 237
    • 11c Enders D, Grossmann A. Angew. Chem. Int. Ed. 2012; 51: 314
    • 11d Jørgensen KA, Albrecht Ł, Jiang H. Angew. Chem. Int. Ed. 2011; 50: 8492
    • 11e Grondal C, Jeanty M, Enders D. Nature Chem. 2010; 2: 167
    • 11f Alba A.-N, Companyo X, Viciano M, Rios R. Curr. Org. Chem. 2009; 13: 1432
    • 11g Yu X, Wang W. Org. Biomol. Chem. 2008; 6: 2037
    • 11h Enders D, Grondal C, Hüttl M. Angew. Chem. Int. Ed. 2007; 46: 1570

      For examples of asymmetric secondary amine catalyzed simple domino reactions, see:
    • 12a Alexakis A, Lefranc A, Guénée L. Org. Lett. 2013; 15: 2172
    • 12b Lee H.-J, Cho C.-W. Eur. J. Org. Chem. 2013; in press; doi: 10.1002/ejoc.201301260
    • 12c Wu L, Wang Y, Song H, Tang L, Zhou Z, Tang C. Chem. Asian J. 2013; 8: 2204
    • 12d Zhang X, Song X, Li H, Zhang S, Chen X, Yu X, Wang W. Angew. Chem. Int. Ed. 2012; 51: 7282
    • 12e Wang C, Yang X, Raabe G, Enders D. Adv. Synth. Catal. 2012; 354: 2629
    • 12f Rueping M, Kuenkel A, Tato F, Bats JW. Angew. Chem. Int. Ed. 2009; 48: 3699
    • 12g Enders D, Wang C, Raabe G. Synthesis 2009; 4119
    • 12h Li H, Zu L, Xie H, Wang J, Wang W. Chem. Commun. 2008; 5636
    • 12i Wang W, Li H, Wang J, Zu L. J. Am. Chem. Soc. 2006; 128: 10354
    • 12j Bui T, Barbas III CF. Tetrahedron Lett. 2000; 41: 6951

      For examples of asymmetric secondary amine catalyzed triple domino reactions, see:
    • 13a Dong L.-J, Fan T.-T, Wang C, Sun J. Org. Lett. 2013; 15: 204
    • 13b Enders D, Joie C, Deckers K. Chem. Eur. J. 2013; 19: 10818
    • 13c Chatterjee I, Bastida D, Melchiorre P. Adv. Synth. Catal. 2013; 355: 3124
    • 13d Jiang K, Jia ZJ, Chen S, Wu L, Chen YC. Chem. Eur. J. 2010; 16: 2852
    • 13e Urushima T, Sakamoto D, Ishikawa H, Hayashi Y. Org. Lett. 2010; 12: 4588
    • 13f Bencivenni G, Wu LY, Mazzanti A, Giannichi B, Pesciaioli F, Song MP, Bartoli G, Melchiorre P. Angew. Chem. Int. Ed. 2009; 48: 7200
    • 13g Enders D, Hüttl MR. M, Raabe G, Bats JW. Adv. Synth. Catal. 2008; 350: 267
    • 13h Carlone A, Cabrera S, Marigo M, Jorgensen KA. Angew. Chem. Int. Ed. 2007; 46: 1101
    • 13i Enders D, Hüttl MR. M, Grondal C, Raabe G. Nature (London) 2006; 441: 861

      For examples of asymmetric secondary amine catalyzed quadruple domino reactions, see:
    • 14a Zeng X, Ni Q, Raabe G, Enders D. Angew. Chem. Int. Ed. 2013; 52: 2977
    • 14b Erdmann N, Philipps AR, Atodiresei I, Enders D. Adv. Synth. Catal. 2013; 355: 847
    • 14c Enders D, Greb A, Deckers K, Selig P, Merkens C. Chem. Eur. J. 2012; 18: 10226
    • 14d Rueping M, Haack K, Ieasuwan W, Sundén H, Blanco M, Shoepke FR. Chem. Commun. 2011; 47: 3828
    • 14e Krüll R, Bettray W, Enders D. Synthesis 2010; 567
    • 14f Wang C, Mukanova M, Greb A, Enders D. Chem. Commun. 2010; 46: 2477
    • 14g Jiang K, Jia Z.-J, Yin X, Wu L, Chen YC. Org. Lett. 2010; 12: 2766
    • 14h Zhang F.-L, Xu A.-W, Gong Y.-F, Wei M.-H, Yang X.-L. Chem. Eur. J. 2009; 15: 6815
    • 14i Kotame P, Hong B.-C, Liao J.-H. Tetrahedron Lett. 2009; 50: 704

      For reviews on organocatalytic asymmetric aza-Michael reactions, see:
    • 15a Kwong FY, Wang J, Li P, Choy PY, Chan AS. C. ChemCatChem 2012; 4: 917
    • 15b Enders D, Wang C, Liebich JX. Chem. Eur. J. 2009; 15: 11058
    • 15c Krishna PR, Sreeshailam A, Srinivas R. Tetrahedron 2009; 65: 9657
  • 16 Baslé O, Raimondi W, Sanchez Duque MM, Bonne D, Constantieux T, Rodriguez J. Org. Lett. 2010; 12: 5246

Zoom Image
Figure 1 Typical examples of pyrrolidin-2-one-containing natural products and pharmaceuticals
Zoom Image
Scheme 1 Asymmetric one-pot synthesis of functionalized 1,3,5-triarylpyrrolidin-2-one derivatives by an organocatalytic simple domino reaction followed by Wittig olefination
Zoom Image
Scheme 2 Proposed mechanism for the domino reaction
Zoom Image
Scheme 3 Proposed transition states for (a) iminium activation, (b) enamine activation, (c) determination of the relative configuration by NOESY measurements