Subscribe to RSS
DOI: 10.1055/s-0033-1340639
Combinatorial Fluorescent Molecular Sensors: The Road to Differential Sensing at the Molecular Level
Publication History
Received: 11 December 2013
Accepted: 18 December 2013
Publication Date:
10 February 2014 (online)
Abstract
Combinatorial fluorescent molecular sensors constitute a unique class of analytical systems that integrate the properties of small-molecule luminescent sensors and cross-reactive sensor arrays (the so-called chemical ‘noses/tongues’). On the one hand, these sensors can differentiate between a wide range of analyte combinations and concentrations, akin to pattern-generating arrays. On the other hand, they can operate in the microscopic world, which macroscopic analytical devices cannot access. This feature article summarizes the different approaches that can be used for obtaining multianalyte detection by fluorescent molecular sensors. In particular, it highlights an exciting prospect in the analytical sciences: differential sensing at the molecular level.
-
References
- 1a de Silva AP, Gunaratne HQ. N, Gunnlaugsson T, Huxley AJ. M, McCoy CP, Rademacher JT, Rice TE. Chem. Rev. 1997; 97: 1515
- 1b Fabbrizzi L, Licchelli M, Parodi L, Poggi A, Taglietti A. J. Fluoresc. 1998; 8: 263
- 1c Callan JF, de Silva AP, Magri DC. Tetrahedron 2005; 61: 8551
- 1d Sinkeldam RW, Greco NJ, Tor Y. Chem. Rev. 2010; 110: 2579
- 1e Erbas-Cakmak S, Guliyev R, Akkaya EU In Supramolecular Chemistry: From Molecules to Nanomaterials . Wiley; Hoboken: 2012
- 2a Rout B, Unger L, Armony G, Iron MA, Margulies D. Angew. Chem. Int. Ed. 2012; 21: 12477
- 2b Rout B, Milko P, Iron MA, Motiei L, Margulies D. J. Am. Chem. Soc. 2013; 135: 15330
- 3 Griffin AB, Adams SR, Tsien RY. Science 1998; 281: 269
- 4a Domaille DW, Que EL, Chang CJ. Nat. Chem. Biol. 2008; 4: 168
- 4b Tomat E, Lippard SJ. Curr. Opin. Chem. Biol. 2010; 14: 225
- 5a James TD, Phillips MD, Shinkai S. Boronic Acids in Saccharide Recognition . RSC Publishing; Cambridge: 2006
- 5b Jin S, Cheng Y, Reid S, Li M, Wang B. Med. Res. Rev. 2010; 30: 171
- 5c Bull SD, Davidson MG, Elsen JM. H. v. d, Fossey JS, Jenkins AT. A, Jiang Y.-B, Kubo Y, Marken F, Sakurai K, Zhao J, James TD. Acc. Chem. Res. 2013; 46: 312
- 6 For a selected review, see: Sakamoto T, Ojida A, Hamachi I. Chem. Commun. 2009; 141
- 7 Sessler JL, Gale PA, Cho W.-S In Anion Receptor Chemistry . Stoddart JF. RSC Publishing; Cambridge: 2006: 320-369
- 8a Giepmans BN. G, Adams SR, Ellisman MH, Tsien RY. Science 2006; 312: 217
- 8b Soh N. Sensors 2008; 8: 1004
- 9a de Silva AP, Gunaratne HQ. N, McCoy CP. A. Nature (London) 1993; 364: 42
- 9b de Silva AP, Uchiyama S. Nat. Nanotechnol. 2007; 2: 399
- 9c Tian H. Angew. Chem. Int. Ed. 2010; 49: 4710
- 9d Amelia M, Zou L, Credi A. Coord. Chem. Rev. 2010; 254: 2267
- 9e de Ruiter G, van der Boom M. Acc. Chem. Res. 2011; 44: 563
- 9f Pischel U, Andréasson J, Gust D, Pais VF. ChemPhysChem 2013; 14: 28
- 10 Magri DC, Brown GJ, McClean GD, de Silva AP. J. Am. Chem. Soc. 2006; 128: 4950
- 11a de Silva A, Uchiyama S. Top. Curr. Chem. 2011; 300: 1
- 11b Bozdemir OA, Guliyev R, Buyukcakir O, Selcuk S, Kolemen S, Gulseren G, Nalbantoglu T, Boyaci H, Akkaya EU. J. Am. Chem. Soc. 2010; 132: 8029
- 12a Uchiyama S, Iwai K, de Silva A. Angew. Chem. Int. Ed. 2008; 25: 4745
- 12b de Silva AP, James MR, McKinney BO. F, Pears DA, Weir SM. Nat. Mater. 2006; 5: 787
- 12c Komatsu H, Miki T, Citterio D, Kubota T, Shindo Y, Kitamura Y, Oka K, Suzuki K. J. Am. Chem. Soc. 2005; 127: 10798
- 12d Yuan L, Lin W, Xie Y, Chen B, Zhu S. J. Am. Chem. Soc. 2012; 134: 1305
- 13a Umali AP, Anslyn EV. Curr. Opin. Chem. Biol. 2010; 14: 685
- 13b Miranda OR, Creran B, Rotello VM. Curr. Opin. Chem. Biol. 2010; 14: 728
- 13c Severin K. Curr. Opin. Chem. Biol. 2010; 14: 737
- 13d Shimizu KD, Stephenson CJ. Curr. Opin. Chem. Biol. 2010; 14: 743
- 13e Anzenbacher P, Liu Y.-L, Kozelkova ME. Curr. Opin. Chem. Biol. 2010; 14: 693
- 13f Margulies D, Hamilton AD. Curr. Opin. Chem. Biol. 2010; 14: 705
- 13g Musto CJ, Suslick KS. Curr. Opin. Chem. Biol. 2010; 14: 758
- 13h Stojanovic MN, Worgall TS. Curr. Opin. Chem. Biol. 2010; 14: 751
- 13i Walt DR. Curr. Opin. Chem. Biol. 2010; 14: 767
- 14a Lavigne JJ, Anslyn EV. Angew. Chem. Int. Ed. 2001; 40: 3118
- 14b Anzenbacher P, Lubal P, Buček P, Palacios MA, Kozelkova ME. Chem. Soc. Rev. 2010; 39: 3954
- 14c Askima JR, Mahmoudiab M, Suslick KS. Chem. Soc. Rev. 2013; 42: 8649
- 15 Larson KK, He M, Teichert JF, Naganawa A, Bode JW. Chem. Sci. 2012; 3: 1825
- 16a Komatsu H, Citterio D, Fujiwara Y, Minamihashi K, Araki Y, Hagiwara M, Suzuki K. Org. Lett. 2005; 7: 2857
- 16b Nelson TL, O’Sullivan C, Greene NT, Maynor MS, Lavigne JJ. J. Am. Chem. Soc. 2006; 128: 5640
- 16c Lee B, Chen S, Heinis C, Scopelliti R, Severin K. Org. Lett. 2013; 15: 3456
- 17a For the first molecular keypad lock, see: Margulies D, Felder C, Melman G, Shanzer A. J. Am. Chem. Soc. 2007; 129: 347
- 17b For a recent review, see: de Silva AP. Molecular Logic-Based Computation. RSC Publishing; Cambridge: 2012. 292−29
- 17c For various other examples of molecular-scale combination locks, see ref. 2b and references within.
- 18 Persaud K, Dodd G. Nature (London) 1982; 299: 352 and references within
- 19a Rock F, Barsan N, Weimar U. Chem. Rev. 2008; 108: 705
- 19b Tisch U, Haick H. Rev. Chem. Eng. 2010; 26: 171
- 19c Turner AP. F, Magan N. Nat. Rev. Microbiol. 2004; 2: 161
- 19d Wilson AD, Baietto M. Sensors 2009; 9: 5099
- 20 For a selected review, see: Anslyn EV. J. Org. Chem. 2007; 72: 687
- 21 See: http://www.nasa.gov/home/hqnews/2008/nov/HQ_08-299_ENose_STS-126.html.
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For the first example of a molecular AND logic gate, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see: