Synlett, Table of Contents Synlett 2014; 25(6): 805-808DOI: 10.1055/s-0033-1340825 letter © Georg Thieme Verlag Stuttgart · New York Concise Synthesis of Chiral N-Benzyl-α,α-Diarylprolinols through Shi Asymmetric Epoxidation Jie Li a College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P. R. of China Fax: +86(570)8015339 Email: gechengsheng@qzu.zj.cn , Hai Zhou a College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P. R. of China Fax: +86(570)8015339 Email: gechengsheng@qzu.zj.cn , Jiangsen Weng a College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P. R. of China Fax: +86(570)8015339 Email: gechengsheng@qzu.zj.cn , Mingwen Wang b ACS Scientific Inc., Metuchen, NJ 08840, USA , Chengsheng Ge* a College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P. R. of China Fax: +86(570)8015339 Email: gechengsheng@qzu.zj.cn , Wujie Tu a College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P. R. of China Fax: +86(570)8015339 Email: gechengsheng@qzu.zj.cn › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A concise and practical synthesis of chiral N-benzyl-α,α-diaryl-2-prolinols was developed through Shi asymmetric epoxidation, followed by double nucleophilic substitution of bromo-containing olefins. A series of enantioenriched N-benzyl-α,α-diaryl-2-prolinols were obtained with excellent enantioselectivities (96% ee) in moderate to good yields (40–76% yield). For the first time, enantiopure N-benzyl-α,α-diphenyl-2-prolinol was obtained from bromo-containing olefin using this methodology. Key words Key wordssynthesis - chiral N-benzyl-α,α-diaryl-2-prolinols - asymmetric epoxidation Full Text References References and Notes 1a Erkkila A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416 1b Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471 1c Fache F, Schulz E, Tommasino ML, Lemaire M. Chem. Rev. 2000; 100: 2159 2a Corey EJ, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551 2b Corey EJ, Shibata SJ, Bakshi RK. J. Org. Chem. 1988; 53: 2861 2c Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1985 3a Soai K, Ookawa A, Kaba T, Ogawa K. J. Am. Chem. Soc. 1987; 109: 7111 3b Trost BM, Christoph MC. J. Am. Chem. Soc. 2008; 130: 2438 3c Fusco CD, Tedesco C, Lattanzi A. J. Org. Chem. 2011; 76: 676 3d Marigo M, Franzen J, Poulsen TB, Zhuang W, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 6964 3e Franzen J, Marigo M, Fielenbach D, Wabnitz TC, Kjaersgaard A, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296 3f Palomo C, Antonia MA. Angew. Chem. Int. Ed. 2006; 45: 7876 3g Sunden H, Rios R, Cordova A. Tetrahedron Lett. 2007; 48: 7865 4 Jensen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248 5 Xu F, Zacuto M, Yoshikawa N, Desmond R, Hoerrner S, Itoh T, Journet M, Humphrey GR, Cowden C, Strotman N, Devine P. J. Org. Chem. 2010; 75: 7829 6a Trost BM, Ngai MY, Dong GB. Org. Lett. 2011; 13: 1900 6b Alvarez IC, Collados LJ. F, Quiroga FM. L. Tetrahedron: Asymmetry 2010; 21: 2334 7 Mathre DJ, Jones TK, Xavier LC, Blacklock TJ, Reamer RA, Mohan JJ, Jones ET. T, Hoogsteen K, Baum MW, Grabowski EJ. J. J. Org. Chem. 1991; 56: 751 8a Nikolic NA, Beak B. Org. Synth. 1997; 74: 23 8b Burchak ON, Philouze C, Chavant PY, Py S. Org. Lett. 2008; 10: 3021 9 Wang B, Fang K, Lin GQ. Tetrahedron Lett. 2003; 44: 7981 10a Wu HY, Chang CW, Chein RJ. J. Org. Chem. 2013; 78: 5788 10b Huang MT, Wu HY, Chein RJ. Chem. Commun. 2014; 50: 1101 11 General Experimental Procedure for the Synthesis of 4a–g A mixture solution of 5,5-diphenyl-4-pentenyl bromide (2a, 1 g, 3.3 mmol) in MeCN–DMM (1:2, v/v, 24 mL), and Na2B4O7·10H2O (0.62 g, 1.6 mmol), tetrabutylammonium hydrogen sulfate (45 mg, 0.13 mmol), and Shi catalyst (0.42 g, 1.65 mmol) in a buffer solution [4·10–4 M aq Na2(EDTA), 16 mL] was cooled to 0 °C in an ice bath. A solution of Oxone (5.06 g, 8.25 mmol) in 4·10–4 M aq Na2(EDTA) solution (20 mL) and a solution of K2CO3 (5 g, 36 mmol) in deionized water were, respectively, added dropwise through two separate addition funnels over a period of 3 h at 0 °C. After addition, the reaction was stirred for another 3 h at this temperature and then diluted with H2O (150 mL). The resulting solution was extracted with PE (2 × 150 mL), dried over Na2SO4, and concentrated to afford the crude 3a (1.56 g, >95% purity), which was applied to next step without purification. The mixture solution of the above obtained crude 3a (1.56 g, ca. 3.3 mmol), benzyl amine (0.706 g, 6.6 mmol), K2CO3 (0.91 g, 6.6 mmol), and freshly activated 4 Å MS (1.56 g) in MeCN (10 mL) was refluxed for 12 h. The resulting solution was filtered and evaporated to give the crude product which was purified over silica gel chroma-tography (EtOAc–PE = 1:20 to 1:10) to afford 0.86 g of 4a as a white solid. Compound 4a: yield 76%; 96% ee. [α]D 22 +91.5 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.75 (d, J = 8 Hz, 2 H), 7.61 (d, J = 8 Hz, 2 H), 7.35–7.06 (m, 11 H), 4.03–3.99 (m, 1 H), 3.26 (d, J = 16 Hz, 1 H), 3.06 (d, J = 16 Hz, 1 H), 2.98–2.93 (m, 1 H), 2.43–2.35 (m, 1 H), 2.03–1.93 (m, 1 H), 1.84–1.63 (m, 3 H). Compound 4b: yield 70%; 96% ee. [α]D 22 +98.4 (c 1.0, CHCl3). IR (KBr): ν = 3400, 2975, 2887, 2808, 1649, 1600, 1502, 1223, 1037, 836 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.70–7.65 (m, 2 H), 7.56–7.51 (m, 2 H), 7.28 (m, 3 H), 7.08 (m, 6H), 3.96–3.92 (m, 1 H), 3.29 (d, J = 16 Hz, 1 H), 3.10 (d, J = 16 Hz, 1 H), 2.98–2.95 (m, 1 H), 1.99–1.90 (m, 1 H), 1.75 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 128.2, 128.0, 127.0, 126.9, 126.9, 126.8, 126.8, 115.0, 114.8, 114.8, 114.6, 77.3, 70.6, 60.6, 55.5, 29.8, 24.1. HRMS: m/z calcd for C24H24F2NO: 380.1820 [M + H]+; found: 380.1797. Compound 4c: yield 40%; 96% ee. [α]D 22 +101.1 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.58 (d, J = 8 Hz, 2 H), 7.45 (d, J = 8 Hz, 2 H), 7.24–7.21 (m, 3 H), 7.06 (d, J = 8 Hz, 2 H), 6.83–6.78 (m, 4 H), 4.85 (br, 1 H), 3.89–3.86 (m, 1 H), 3.75 (s, 1 H), 3.69 (s, 3 H), 3.30 (d, J = 12 Hz, 1 H), 3.02 (d, J = 12 Hz, 1 H), 2.37–2.30 (m, 1 H), 1.97–1.87 (m, 1 H), 1.78–1.71 (m, 1 H), 1.65–1.57 (m, 2 H). Compound 4d: yield 75%; 96% ee. [α]D 22 +94.5 (c 1.0, CHCl3). IR (KBr): ν = 3290, 3027, 2965, 2919, 2806, 1507, 1454, 1381, 1099, 1038, 803, 699 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 8 Hz, 2 H), 7.47 (d, J = 12 Hz, 2 H), 7.28–7.21 (m, 3 H), 7.13–7.08 (m, 6 H), 3.98–3.93 (m, 1 H), 3.33 (d, J = 16 Hz, 1 H), 3.04 (d, J = 16 Hz, 1 H), 2.96–2.90 (m, 1 H), 2.41–2.32 (m, 1 H), 2.30 (s, 3 H), 2.24 (s, 3 H), 2.04–1.94 (m, 1 H), 1.91–1.73 (m, 1 H), 1.69–1.59 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 145.1, 143.9, 139.6, 135.5, 135.3, 128.7, 128.7, 128.5, 127.9, 126.6, 125.2, 77.6, 70.6, 60.6, 55.5, 29.8, 24.1, 20.9. HRMS: m/z calcd for C26H30NO: 372.2322 [M + H]+; found: 372.2292. Compound 4e: yield 76%; 96% ee. [α]D 22 +90.8 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.55 (s, 1 H), 7.47 (d, J = 8 Hz, 1 H), 7.41 (s, 1 H), 7.36 (d, J = 8 Hz, 1 H), 7.30–7.13 (m, 5 H), 7.04 (d, J = 6 Hz, 1 H), 6.98 (d, J = 8 Hz, 1 H), 6.90 (d, J = 8 Hz, 1 H), 3.94–3.90 (m, 1 H), 3.18 (d, J = 12 Hz, 1 H), 3.02 (d, J = 12 Hz, 1 H), 2.93–2.91 (m, 1 H), 2.38–2.35 (m, 7 H), 2.03–1.94 (m, 1 H), 1.81–1.56 (m, 3 H). Compound 4f: yield 77%. 96% ee. [α]D 22 +88.8 (c 1.0, CHCl3). IR (KBr): ν = 3426, 2964, 2930, 1652, 1607, 1452, 1414, 1261, 1099, 1030, 818, 699 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.61 (d, J = 12 Hz, 2 H), 7.47 (d, J = 8 Hz, 4 H), 7.17–7.03 (m, 9 H), 4.85 (br s, 1 H), 3.96–3.91 (m, 1 H), 3.27 (d, J = 16 Hz, 1 H), 3.02 (d, J = 16 Hz, 1 H), 2.92–2.89 (m, 1 H), 2.62–2.51 (m, 4 H), 1.94–1.93 (m, 1 H), 1.76–1.74 (m, 1 H), 1.61–1.54 (m, 2 H), 1.21–1.10 (m, 6 H). 13C NMR (100 MHz, CDCl3): δ = 145.3, 144.1, 141.8, 141.6, 139.7, 128.5, 127.9, 127.4, 127.3, 126.6, 125.4, 125.2, 77.7, 70.8, 60.6, 55.6, 29.9, 28.4, 28.3, 24.2, 14.4, 15.4. HRMS: m/z calcd for C26H30NO: 400.2635 [M + H]+; found: 400.2611. Compound 4g: yield 68%. 96% ee. [α]D 22 +94.8 (c 1.0, CHCl3). IR (KBr): ν = 3333, 3061, 3028, 2963, 2871, 2804, 1488, 1403, 1092, 1012, 809, 699 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.66 (d, J = 12 Hz, 2 H), 7.51 (d, J = 12 Hz, 2 H), 7.30–7.22 (m, 7 H), 7.06 (d, J = 8 Hz, 2 H), 5.07 (br s, 1 H), 3.95–3.91 (m, 1 H), 3.33 (d, J = 20 Hz, 1 H), 3.10 (d, J = 16 Hz, 1 H), 2.98–2.94 (m, 1 H), 2.43–2.37 (m, 1 H), 1.98–1.92 (m, 1 H), 1.74–1.62 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 146.6, 145.2, 139.4, 132.7, 132.5, 128.7, 128.7, 128.6, 128.5, 127.3, 127.3, 127.2, 77.4, 70.6, 60.8, 55.7, 30.0, 24.2. HRMS: m/z calcd for C24H24Cl2NO: 412.1229 [M + H]+; found: 412.1209. Supplementary Material Supplementary Material Supporting Information