Synlett 2014; 25(07): 1009-1013
DOI: 10.1055/s-0033-1340830
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Synthesis of Indene Derivatives via Intramolecular Allylic Arylation of Baylis–Hillman Acetates

Jiangbin Shao
College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Fax: +86(571)88320799   Email: future@zjut.edu.cn
,
Peizhu Hu
College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Fax: +86(571)88320799   Email: future@zjut.edu.cn
,
Guo Hong
College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Fax: +86(571)88320799   Email: future@zjut.edu.cn
,
Mingwu Fang
College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Fax: +86(571)88320799   Email: future@zjut.edu.cn
,
Xiaoqing Li
College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Fax: +86(571)88320799   Email: future@zjut.edu.cn
,
Xiangsheng Xu*
College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Fax: +86(571)88320799   Email: future@zjut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 08 December 2013

Accepted after revision: 23 January 2014

Publication Date:
13 February 2014 (online)


Abstract

An intramolecular allylic arylation protocol for the synthesis of indene derivatives from readily available Baylis–Hillman acetates via palladium-catalyzed C–H bond activation has been developed.

Supporting Information

 
  • References and Notes

  • 1 Barberá J, Rakitin OA, Ros MB, Ros NB, Torroba T. Angew. Chem. Int. Ed. 1998; 37: 296
    • 2a Harrowven DC, Newman NA, Knight CA. Tetrahedron Lett. 1998; 39: 6757
    • 2b Karaguni IM, Glusenkamp KH, Langerak A, Geisen C, Ullrich V, Winde G, Moroy T, Muller O. Bioorg. Med. Chem. Lett. 2002; 12: 709
    • 2c Kolanos R, Siripurapu U, Pullagurla M, Riaz M, Setola V, Roth BL, Dukat M, Glennon RA. Bioorg. Med. Chem. Lett. 2005; 15: 1987
    • 2d Wang Y, Mo S, Wang YS, Li JS, Yang YC, Shi JG. Org. Lett. 2005; 7: 1675
    • 3a Zargarian D. Coord. Chem. Rev. 2002; 157: 233
    • 3b Alt HG, Köppl A. Chem. Rev. 2000; 100: 1205
    • 3c Wang BQ. Coord. Chem. Rev. 2006; 250: 242
    • 4a Skattebøl L, Boulette B. J. Org. Chem. 1966; 31: 81
    • 4b Padwa A, Blacklock TJ, Loza R. J. Org. Chem. 1982; 47: 3712
    • 4c Lu JM, Shi M. Org. Lett. 2006; 8: 5317
    • 4d Yadav VK, Kumar NV, Parvez M. Chem. Commun. 2007; 22: 2281
    • 4e Zhu ZB, Shi M. Chem. Eur. J. 2008; 14: 10219
    • 4f Hu B, Xing SY, Wang ZW. Org. Lett. 2008; 10: 5481
    • 4g Wang J, Zhang L, Jing Y, Huang W, Zhou X. Tetrahedron Lett. 2009; 50: 4978
    • 5a Seomoon D, Lee K, Kim H, Lee PH. Chem. Eur. J. 2007; 13: 5197
    • 5b Kuninobu Y, Nishina Y, Shouho M, Takai K. Angew. Chem. Int. Ed. 2006; 45: 2766
    • 5c Kuninobu Y, Kawata A, Takai K. J. Am. Chem. Soc. 2005; 127: 13498
    • 5d Kuninobu Y, Tokunaga Y, Kawata A, Takai K. J. Am. Chem. Soc. 2006; 128: 202
    • 5e Duan XH, Guo LN, Bi HP, Liu XY, Liang YM. Org. Lett. 2006; 8: 3053
    • 5f Guo LN, Duan XH, Bi HP, Liu XY, Liang YM. J. Org. Chem. 2006; 71: 3325
    • 5g Zhang DH, Liu ZJ, Yum EK, Larock RC. J. Org. Chem. 2007; 72: 251
    • 5h Guan ZH, Ren ZH, Zhao LB, Liang YM. Org. Biomol. Chem. 2008; 6: 1040
    • 5i Rayabarapu DK, Cheng CH. Chem. Commun. 2002; 9: 942
    • 5j Chang KJ, Rayabarapu DK, Cheng CH. J. Org. Chem. 2004; 69: 4781
    • 5k Dubé P, Toste FD. J. Am. Chem. Soc. 2006; 128: 12062
  • 6 Dethe DH, Murhade G. Org. Lett. 2013; 15: 429
  • 7 Zhao J, Clark DA. Org. Lett. 2012; 14: 1668
  • 8 Eom D, Park S, Park Y, Ryu T, Lee PH. Org. Lett. 2012; 14: 5392
  • 9 Magar KB. S, Lee YR. Org. Lett. 2013; 15: 4288
    • 10a Liu C.-R, Yang F.-L, Jin Y.-Z, Ma X.-T, Cheng D.-J, Li N, Tian S.-K. Org. Lett. 2010; 12: 3832
    • 10b Sun Z.-M, Chen S.-P, Zhao P. Chem. Eur. J. 2010; 16: 2619
    • 10c Muralirajan K, Parthasarathy K, Cheng C.-H. Angew. Chem. Int. Ed. 2011; 50: 4169
    • 10d Patureau FW, Besset T, Kuhl N, Glorius F. J. Am. Chem. Soc. 2011; 133: 2154
    • 10e Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 11098
    • 10f Zhao P, Wang F, Han K, Li X. Org. Lett. 2012; 14: 5506
  • 12 Smith CD, Rosocha G, Mui L, Batey RA. J. Org. Chem. 2010; 75: 4716 ; and references cited therein
  • 13 General Procedure for the Intramolecular Allylic Alkylation of Baylis–Hillman Acetates Baylis–Hillman acetate (0.5 mmol), Pd(OAc)2 (5.6 mg, 0.025 mmol), K2CO3 (69 mg, 0.5 mmol), and Ph3P (26.2 mg, 0.1 mmol) were placed in a Schlenk tube. The reaction vessel was purged with argon, and dioxane (2.0 mL) was added. After the reaction mixture was stirred at 110 °C for 10 h, the solvent was removed under reduced pressure, and the residual was purified by silica gel chromatography (EtOAc–PE = 1:20) to give indenes 2.
  • 14 Suzuki Y, Nemoto TK, Kakugawa A, Hamajima J, Hamada Y. Org. Lett. 2012; 14: 2350
  • 15 Akermark B, Hansson S, Vitagliano A. J. Am. Chem. Soc. 1990; 112: 4587