Aktuelle Neurologie 2013; 40(08): 433-444
DOI: 10.1055/s-0033-1343323
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Neue Behandlungsansätze bei erblich bedingten Myopathien

New Therapeutic Strategies for Inherited Myopathies
J. Kinter
Universitätsspital Basel, Neuromuskuläres Zentrum, Departmente Neurologie und Biomedizin
,
M. Sinnreich
Universitätsspital Basel, Neuromuskuläres Zentrum, Departmente Neurologie und Biomedizin
› Author Affiliations
Further Information

Publication History

Publication Date:
17 July 2013 (online)

Zusammenfassung

Erbliche bedingte Myopathien bilden eine heterogene Gruppe von Muskelerkrankungen, bei denen genetische Mutationen unterschiedliche Auswirkungen auf die Physiologie der Muskelzelle haben. Diese können zu einem teilweisen oder kompletten Verlust der Funktion wichtiger Proteine führen, aber auch zur Produktion von toxischen Produkten auf RNA- und Proteinebene. Verschiedenste therapeutische Ansätze wurden in den letzten Jahren experimentell an Tiermodellen und in klinischen Studien getestet. Strategien wie Zellersatztherapien mit Stammzellen, Gentherapie mit viralen Vektoren und Therapien mit Antisense-Oligonukleotiden haben vielversprechende Resultate geliefert, die nun teilweise in klinischen Studien validiert werden und somit Hoffnung auf eine baldige klinische Anwendung wecken.

Abstract

Inherited myopathies form a heterogenous group of muscle diseases, in which genetic mutations may lead to a loss of function of the proteins implicated in important cellular tasks. On the other hand, genetic mutations may also have an effect on chromatin structure or produce toxic RNA or proteins, which are detrimental for the muscle cell. An understanding of the molecular biology of muscle diseases has led to the advancement of several therapeutic strategies which, after showing promise in animal models, are now being tested in clinical trials. Strategies such as cell replacement therapies with stem cells, gene therapies with viral vectors and therapies with antisense oligonucleotides have furnished promising results and have now in part been validated in clinical studies, thus showing promise for clinical use in the near future.

 
  • Literatur

  • 1 Hoffman EP, Brown Jr RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51: 919-928
  • 2 Bushby K, Finkel R, Birnkrant DJ et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 2010; 9: 77-93
  • 3 Bushby K, Finkel R, Birnkrant DJ et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol 2010; 9: 177-189
  • 4 Hoogerwaard EM, Bakker E, Ippel PF et al. Signs and symptoms of Duchenne muscular dystrophy and Becker muscular dystrophy among carriers in The Netherlands: a cohort study. Lancet 1999; 353: 2116-2119
  • 5 Karpati G, Ajdukovic D, Arnold D et al. Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol 1993; 34: 8-17
  • 6 Karpati G, Gilbert R, Petrof BJ et al. Gene therapy research for Duchenne and Becker muscular dystrophies. Curr Opin Neurol 1997; 10: 430-435
  • 7 Malik V, Rodino-Klapac LR, Viollet L et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol 2010; 67: 771-780
  • 8 Gilbert R, Nalbanoglu J, Tinsley JM et al. Efficient utrophin expression following adenovirus gene transfer in dystrophic muscle. Biochem Biophys Res Commun 1998; 242: 244-247
  • 9 Moorwood C, Lozynska O, Suri N et al. Drug discovery for Duchenne muscular dystrophy via utrophin promoter activation screening. PLoS One 2011; 6: e26169
  • 10 Muntoni F, Wood MJ. Targeting RNA to treat neuromuscular disease. Nat Rev Drug Discov 2011; 10: 621-637
  • 11 Partridge TA, Grounds M, Sloper JC. Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature 1978; 273: 306-308
  • 12 Law PK, Yap JL. New muscle transplant method produces normal twitch tension in dystrophic muscle. Muscle Nerve 1979; 2: 356-363
  • 13 Skuk D, Goulet M, Roy B et al. Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 2006; 65: 371-386
  • 14 Skuk D, Goulet M, Roy B et al. First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 2007; 17: 38-46
  • 15 Ichim TE, Alexandrescu DT, Solano F et al. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010; 260: 75-82
  • 16 Torrente Y, Belicchi M, Marchesi C et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 2007; 16: 563-577
  • 17 Wein N, Avril A, Bartoli M et al. Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat 2010; 31: 136-142
  • 18 Skuk D, Paradis M, Goulet M et al. Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies. Transplantation 2007; 84: 1307-1315
  • 19 Ikemoto M, Fukada S, Uezumi A et al. Autologous transplantation of SM/C-2.6(+) satellite cells transduced with micro-dystrophin CS1 cDNA by lentiviral vector into mdx mice. Mol Ther 2007; 15: 2178-2185
  • 20 Tedesco FS, Dellavalle A, Diaz-Manera J et al. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 2010; 120: 11-19
  • 21 Kazuki Y, Hiratsuka M, Takiguchi M et al. Complete genetic correction of ips cells from Duchenne muscular dystrophy. Mol Ther 2010; 18: 386-393
  • 22 Goudenege S, Lebel C, Huot NB et al. Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol Ther 2012; 20: 2153-2167
  • 23 Neumeyer AM, Cros D, McKenna-Yasek D et al. Pilot study of myoblast transfer in the treatment of Becker muscular dystrophy. Neurology 1998; 51: 589-592
  • 24 Law PK, Bertorini TE, Goodwin TG et al. Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet 1990; 336: 114-115
  • 25 Law PK, Goodwin TG, Fang QW et al. Myoblast transfer therapy for Duchenne muscular dystrophy. Acta Paediatr Jpn 1991; 33: 206-215
  • 26 Huard J, Roy R, Bouchard JP et al. Human myoblast transplantation between immunohistocompatible donors and recipients produces immune reactions. Transplant Proc 1992; 24: 3049-3051
  • 27 Law PK, Goodwin TG, Fang Q et al. Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell transplantation 1992; 1: 235-244
  • 28 Gussoni E, Pavlath GK, Lanctot AM et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 1992; 356: 435-438
  • 29 Tremblay JP, Malouin F, Roy R et al. Results of a triple blind clinical-study of myoblast transplantations without immunosuppressive treatment in young boys with duchenne muscular-dystrophy. Cell Transplantation 1993; 2: 99-112
  • 30 Morandi L, Bernasconi P, Gebbia M et al. Lack of messenger-rna and dystrophin expression in dmd patients 3 months after myoblast transfer. Neuromuscular Disorders 1995; 5: 291-295
  • 31 Mendell JR, Kissel JT, Amato AA et al. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 1995; 333: 832-838
  • 32 Miller RG, Sharma KR, Pavlath GK et al. Myoblast implantation in Duchenne muscular dystrophy: The San Francisco study. Muscle & Nerve 1997; 20: 469-478
  • 33 Skuk D, Goulet M, Tremblay JP. Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplantation 2006; 15: 659-663
  • 34 Torrente Y, Belicchi M, Sampaolesi M et al. Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 2004; 114: 182-195
  • 35 Torrente Y, Belicchi M, Marchesi C et al. Autologous transplantation of muscle-derived CD133(+) stem cells in Duchenne muscle patients. Cell Transplantation 2007; 16: 563-577
  • 36 Sampaolesi M, Blot S, D’Antona G et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444: 574-579
  • 37 Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465-1468
  • 38 Richard P, Bossard F, Desigaux L et al. Amphiphilic block copolymers promote gene delivery in vivo to pathological skeletal muscles. Hum Gene Ther 2005; 16: 1318-1324
  • 39 DelloRusso C, Scott JM, Hartigan-O’Connor D et al. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 2002; 99: 12979-12984
  • 40 Watchko J, O’Day T, Wang B et al. Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum Gene Ther 2002; 13: 1451-1460
  • 41 Ferrer A, Wells KE, Wells DJ. Immune responses to dystropin: implications for gene therapy of Duchenne muscular dystrophy. Gene Ther 2000; 7: 1439-1446
  • 42 Wolff JA, Ludtke JJ, Acsadi G et al. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1992; 1: 363-369
  • 43 Acsadi G, Dickson G, Love DR et al. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 1991; 352: 815-818
  • 44 Liu F, Nishikawa M, Clemens PR et al. Transfer of full-length Dmd to the diaphragm muscle of Dmd(mdx/mdx) mice through systemic administration of plasmid DNA. Mol Ther 2001; 4: 45-51
  • 45 Liang KW, Nishikawa M, Liu F et al. Restoration of dystrophin expression in mdx mice by intravascular injection of naked DNA containing full-length dystrophin cDNA. Gene Ther 2004; 11: 901-908
  • 46 Zhang G, Ludtke JJ, Thioudellet C et al. Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of duchenne muscular dystrophy. Hum Gene Ther 2004; 15: 770-782
  • 47 Li S, Kimura E, Fall BM et al. Stable transduction of myogenic cells with lentiviral vectors expressing a minidystrophin. Gene Therapy 2005; 12: 1099-1108
  • 48 Hacein-Bey-Abina S, von Kalle C, Schmidt M et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. New England Journal of Medicine 2003; 348: 255-256
  • 49 Yi Y, Hahm SH, Lee KH. Retroviral gene therapy: safety issues and possible solutions. Curr Gene Ther 2005; 5: 25-35
  • 50 Bachrach E, Perez AL, Choi YH et al. Muscle engraftment of myogenic progenitor cells following intraarterial transplantation. Muscle & Nerve 2006; 34: 44-52
  • 51 Dellavalle A, Sampaolesi M, Tonlorenzi R et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology 2007; 9: 255-267
  • 52 Acsadi G, Lochmuller H, Jani A et al. Dystrophin expression in muscles of mdx mice after adenovirus-mediated in vivo gene transfer. Human Gene Therapy 1996; 7: 129-140
  • 53 Vincent N, Ragot T, Gilgenkrantz H et al. Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nature Genetics 1993; 5: 130-134
  • 54 Clemens PR, Kochanek S, Sunada Y et al. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Therapy 1996; 3: 965-972
  • 55 DelloRusso C, Scott JM, Hartigan-O’Connor D et al. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proceedings of the National Academy of Sciences of the United States of America 2002; 99: 12979-12984
  • 56 KumarSingh R, Chamberlain JS. Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells. Human Molecular Genetics 1996; 5: 913-921
  • 57 Chen HH, Mack LM, Kelly R et al. Persistence in muscle of an adenoviral vector that lacks all viral genes. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 1645-1650
  • 58 Gilbert R, Dudley RWR, Liu AB et al. Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Human Molecular Genetics 2003; 12: 1287-1299
  • 59 Dudley RW, Lu Y, Gilbert R et al. Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum Gene Ther 2004; 15: 145-156
  • 60 Zoltick PW, Chirmule N, Schnell MA et al. Biology of E1-deleted adenovirus vectors in nonhuman primate muscle. Journal of Virology 2001; 75: 5222-5229
  • 61 Brunetti-Pierri N, Palmer DJ, Beaudet AL et al. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Human Gene Therapy 2004; 15: 35-46
  • 62 Raper SE, Chirmule N, Lee FS et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Molecular Genetics and Metabolism 2003; 80: 148-158
  • 63 Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 2000; 97: 13714-13719
  • 64 Abmayr S, Gregorevic P, Allen JM et al. Phenotypic improvement of dystrophic muscles by rAAV/microdystrophin vectors is augmented by Igf1 codelivery. Molecular Therapy 2005; 12: 441-450
  • 65 Bachrach E, Li S, Perez AL et al. Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proceedings of the National Academy of Sciences of the United States of America 2004; 101: 3581-3586
  • 66 Gregorevic P, Blankinship MJ, Allen JM et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nature Medicine 2004; 10: 828-834
  • 67 Lei B, Zhang K, Yue Y et al. Adeno-associated virus serotype-9 efficiently transduces the retinal outer plexiform layer. Molecular Vision 2009; 15: 1374-1382
  • 68 Yue YP, Li ZB, Harper SQ et al. Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation 2003; 108: 1626-1632
  • 69 Yue Y, Ghosh A, Long C et al. A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Molecular Therapy 2008; 16: 1944-1952
  • 70 Podsakoff G, Wong KK, Chatterjee S. Efficient gene-transfer into nondividing cells by adenoassociated virus-based vectors. Journal of Virology 1994; 68: 5656-5666
  • 71 Gregorevic P, Blankinship MJ, Allen JM et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828-834
  • 72 Herzog RW, Yang EY, Couto LB et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nature Medicine 1999; 5: 56-63
  • 73 Manno CS, Chew AJ, Hutchison S et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963-2972
  • 74 van Deutekom JC, van Ommen GJ. Advances in Duchenne muscular dystrophy gene therapy. Nat Rev Genet 2003; 4: 774-783
  • 75 Mendell JR, Campbell K, Rodino-Klapac L et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 2010; 363: 1429-1437
  • 76 Romero NB, Braun S, Benveniste O et al. Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum Gene Ther 2004; 15: 1065-1076
  • 77 Hagstrom JE, Hegge J, Zhang G et al. A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther 2004; 10: 386-398
  • 78 Bowles DE, McPhee SW, Li C et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 2012; 20: 443-455
  • 79 Barton-Davis ER, Cordier L, Shoturma DI et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999; 104: 375-381
  • 80 Dunant P, Walter MC, Karpati G et al. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve 2003; 27: 624-627
  • 81 Aurino S, Nigro V. Readthrough strategies for stop codons in Duchenne muscular dystrophy. Acta Myol 2006; 25: 5-12
  • 82 Wagner KR, Hamed S, Hadley DW et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001; 49: 706-711
  • 83 Finkel RS. Read-through strategies for suppression of nonsense mutations in Duchenne/Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol 2010; 25: 1158-1164
  • 84 Hoffman EP, Bronson A, Levin AA et al. Restoring dystrophin expression in duchenne muscular dystrophy muscle progress in exon skipping and stop codon read through. Am J Pathol 2011; 179: 12-22
  • 85 Dunckley MG, Manoharan M, Villiet P et al. Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 1998; 7: 1083-1090
  • 86 Lu QL, Mann CJ, Lou F et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 2003; 9: 1009-1014
  • 87 Yokota T, Lu Q-l, Partridge T et al. Efficacy of Systemic Morpholino Exon-Skipping in Duchenne Dystrophy Dogs. Annals of Neurology 2009; 65: 667-676
  • 88 van Deutekom JC, Janson AA, Ginjaar IB et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357: 2677-2686
  • 89 Kinali M, Arechavala-Gomeza V, Feng L et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009; 8: 918-928
  • 90 Cirak S, Arechavala-Gomeza V, Guglieri M et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 2011; 378: 595-605
  • 91 Goemans NM, Tulinius M, van den Akker JT et al. Systemic Administration of PRO051 in Duchenne’s Muscular Dystrophy. New England Journal of Medicine 2011; 364: 1513-1522
  • 92 Opar A. Exon-skipping drug pulls ahead in muscular dystrophy field. Nat Med 2012; 18: 1314
  • 93 Ohlendieck K, Ervasti JM, Matsumura K et al. Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron 1991; 7: 499-508
  • 94 Khurana TS, Watkins SC, Chafey P et al. Immunolocalization and developmental expression of dystrophin related protein in skeletal muscle. Neuromuscul Disord 1991; 1: 185-194
  • 95 Tinsley JM, Blake DJ, Roche A et al. Primary structure of dystrophin-related protein. Nature 1992; 360: 591-593
  • 96 Tinsley J, Deconinck N, Fisher R et al. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 1998; 4: 1441-1444
  • 97 Tinsley JM, Fairclough RJ, Storer R et al. Daily Treatment with SMTC1100, a Novel Small Molecule Utrophin Upregulator, Dramatically Reduces the Dystrophic Symptoms in the mdx Mouse. Plos One 2011; 6
  • 98 Krag TO, Bogdanovich S, Jensen CJ et al. Heregulin ameliorates the dystrophic phenotype in mdx mice. Proc Natl Acad Sci U S A 2004; 101: 13856-13860
  • 99 Cerletti M, Negri T, Cozzi F et al. Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Ther 2003; 10: 750-757
  • 100 Guglieri M, Magri F, Comi GP. Molecular etiopathogenesis of limb girdle muscular and congenital muscular dystrophies: boundaries and contiguities. Clin Chim Acta 2005; 361: 54-79
  • 101 Laval SH, Bushby KM. Limb-girdle muscular dystrophies – from genetics to molecular pathology. Neuropathol Appl Neurobiol 2004; 30: 91-105
  • 102 Hauser MA, Horrigan SK, Salmikangas P et al. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet 2000; 9: 2141-2147
  • 103 Muchir A, Bonne G, van der Kooi AJ et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 2000; 9: 1453-1459
  • 104 Minetti C, Sotgia F, Bruno C et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 1998; 18: 365-368
  • 105 Harms MB, Sommerville RB, Allred P et al. Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol 2012; 71: 407-416
  • 106 Greenberg SA, Salajegheh M, Judge DP et al. Etiology of limb girdle muscular dystrophy 1D/1E determined by laser capture microdissection proteomics. Ann Neurol 2012; 71: 141-145
  • 107 Zatz M, Starling A. Calpains and disease. N Engl J Med 2005; 352: 2413-2423
  • 108 Liu J, Aoki M, Illa I et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 1998; 20: 31-36
  • 109 Ben Othmane K, Ben Hamida M, Pericak-Vance MA et al. Linkage of Tunisian autosomal recessive Duchenne-like muscular dystrophy to the pericentromeric region of chromosome 13q. Nat Genet 1992; 2: 315-317
  • 110 Roberds SL, Leturcq F, Allamand V et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 1994; 78: 625-633
  • 111 Bonnemann CG, Modi R, Noguchi S et al. Beta-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nat Genet 1995; 11: 266-273
  • 112 Nigro V, de Sa Moreira E, Piluso G et al. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nat Genet 1996; 14: 195-198
  • 113 Moreira ES, Wiltshire TJ, Faulkner G et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 2000; 24: 163-166
  • 114 Frosk P, Weiler T, Nylen E et al. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am J Hum Genet 2002; 70: 663-672
  • 115 Brockington M, Yuva Y, Prandini P et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 2001; 10: 2851-2859
  • 116 Udd B, Vihola A, Sarparanta J et al. Titinopathies and extension of the M-line mutation phenotype beyond distal myopathy and LGMD2J. Neurology 2005; 64: 636-642
  • 117 Balci B, Uyanik G, Dincer P et al. An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord 2005; 15: 271-275
  • 118 Bolduc V, Marlow G, Boycott KM et al. Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet 2010; 86: 213-221
  • 119 Godfrey C, Escolar D, Brockington M et al. Fukutin gene mutations in steroid-responsive limb girdle muscular dystrophy. Ann Neurol 2006; 60: 603-610
  • 120 Biancheri R, Falace A, Tessa A et al. POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem Biophys Res Commun 2007; 363: 1033-1037
  • 121 Clement EM, Godfrey C, Tan J et al. Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch Neurol 2008; 65: 137-141
  • 122 Gundesli H, Talim B, Korkusuz P et al. Mutation in exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy. Am J Hum Genet 2010; 87: 834-841
  • 123 Sinnreich M, Therrien C, Karpati G. Lariat branch point mutation in the dysferlin gene with mild limb-girdle muscular dystrophy. Neurology 2006; 66: 1114-1116
  • 124 Aartsma-Rus A, Singh KH, Fokkema IF et al. Therapeutic exon skipping for dysferlinopathies?. Eur J Hum Genet 2010; 18: 889-894
  • 125 Wang B, Yang Z, Brisson BK et al. Membrane blebbing as an assessment of functional rescue of dysferlin-deficient human myotubes via nonsense suppression. J Appl Physiol 2010; 109: 901-905
  • 126 Krahn M, Wein N, Bartoli M et al. A naturally occurring human minidysferlin protein repairs sarcolemmal lesions in a mouse model of dysferlinopathy. Sci Transl Med 2010; 2: 50ra69
  • 127 Azakir BA, Di Fulvio S, Salomon S et al. Modular dispensability of dysferlin C2 domains reveals rational design for mini-dysferlin molecules. J Biol Chem 2012; 287: 27629-27636
  • 128 Azakir BA, Di Fulvio S, Kinter J et al. Proteasomal inhibition restores biological function of mis-sense mutated dysferlin in patient-derived muscle cells. J Biol Chem 2012; 287: 10344-10354
  • 129 Schoewel V, Marg A, Kunz S et al. Dysferlin-peptides reallocate mutated dysferlin thereby restoring function. PLoS One 2012; 7: e49603
  • 130 Tawil R, Van Der Maarel SM. Facioscapulohumeral muscular dystrophy. Muscle Nerve 2006; 34: 1-15
  • 131 van der Maarel SM, Frants RR, Padberg GW. Facioscapulohumeral muscular dystrophy. Biochim Biophys Acta 2007; 1772: 186-194
  • 132 Lemmers RJ, van der Vliet PJ, Klooster R et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 2010; 329: 1650-1653
  • 133 Lemmers RJ, Tawil R, Petek LM et al. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet 2012; 44: 1370-1374
  • 134 Morosetti R, Gidaro T, Broccolini A et al. Mesoangioblasts from facioscapulohumeral muscular dystrophy display in vivo a variable myogenic ability predictable by their in vitro behavior. Cell Transplant 2011; 20: 1299-1313
  • 135 Wallace LM, Liu J, Domire JS et al. RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy. Mol Ther 2012; 20: 1417-1423
  • 136 Mankodi A, Thornton C. Myotonic syndromes. Curr Opin Neurol 2002; 15: 545-552
  • 137 Brook J, McCurrach M, Harley H et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 1992; 69: 385
  • 138 Liquori CL, Ricker K, Moseley ML et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001; 293: 864-867
  • 139 Miller JW, Urbinati CR, Teng-Umnuay P et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. Embo J 2000; 19: 4439-4448
  • 140 Mankodi A, Urbinati C, Yuan Q et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 2001; 10: 2165-2170
  • 141 Mankodi A, Takahashi M, Jiang H et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 2002; 10: 35-44
  • 142 Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 2012; 11: 891-905
  • 143 Damian MS, Gerlach A, Schmidt F et al. Modafinil for excessive daytime sleepiness in myotonic dystrophy. Neurology 2001; 56: 794-796
  • 144 Turner C, Hilton-Jones D. The myotonic dystrophies: diagnosis and management. J Neurol Neurosurg Psychiatry 2010; 81: 358-367
  • 145 Foff EP, Mahadevan MS. Therapeutics development in myotonic dystrophy type 1. Muscle Nerve 2011; 44: 160-169
  • 146 Mulders S, van den Broek W, Wheeler T et al. Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci U S A 2009; 106: 13915-13920
  • 147 Wheeler T, Sobczak K, Lueck J et al. Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 2009; 325: 336-339
  • 148 Lee JE, Bennett CF, Cooper TA. RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci U S A 2012; 109: 4221-4226
  • 149 Wheeler TM, Leger AJ, Pandey SK et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 2012; 488: 111-115
  • 150 Furling D, Doucet G, Langlois MA et al. Viral vector producing antisense RNA restores myotonic dystrophy myoblast functions. Gene Ther 2003; 10: 795-802
  • 151 Langlois MA, Boniface C, Wang G et al. Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in myotonic dystrophy cells. J Biol Chem 2005; 280: 16949-16954
  • 152 Langlois MA, Lee NS, Rossi JJ et al. Hammerhead ribozyme-mediated destruction of nuclear foci in myotonic dystrophy myoblasts. Mol Ther 2003; 7: 670-680
  • 153 García-López A, Llamusí B, Orzáez M et al. In vivo discovery of a peptide that prevents CUG-RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models. Proc Natl Acad Sci U S A 2011; 108: 11866-11871
  • 154 Pushechnikov A, Lee M, Childs-Disney J et al. Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. J Am Chem Soc 2009; 131: 9767-9779
  • 155 Childs-Disney JL, Hoskins J, Rzuczek SG et al. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive. ACS Chem Biol 2012; 7: 856-862
  • 156 Warf M, Nakamori M, Matthys C et al. Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A 2009; 106: 18551-18556