Neuroradiologie Scan 2014; 04(01): 61-80
DOI: 10.1055/s-0033-1344647
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Strahlennekrose im Gehirn: Bildgebungsmerkmale und Abgrenzung zum Tumorrezidiv[1]

Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence
Ritu Shah
,
Surjith Vattoth
,
Rojymon Jacob
,
Fathima Fijula Palot Manzil
,
Janis P. O’Malley
,
Peyman Borghei
,
Bhavik N. Patel
,
Joel K. Curé
Further Information

Publication History

Publication Date:
07 January 2014 (online)

Zusammenfassung

Die Strahlennekrose im Gehirn tritt üblicherweise in 3 verschiedenen klinischen Szenarien auf: bei der Strahlentherapie von Kopf-Hals-Malignomen oder intrakraniellen extraaxialen Tumoren, bei stereotaktischer Strahlentherapie (einschließlich der Radiochirurgie) zur Behandlung von Hirnmetastasen sowie bei der Strahlentherapie primärer Hirntumoren. Bei der Beurteilung, ob es sich bei der pathologischen Veränderung im Bildbefund um eine Strahlennekrose oder ein Tumorrezidiv handelt, ist die Kenntnis folgender Faktoren extrem wichtig: Bestrahlungsplan, Menge des im Bestrahlungsfeld liegenden Hirngewebes, Art der Strahlung, Lokalisation des Primärmalignoms und seit der letzten Bestrahlung verstrichene Zeit. Herkömmliche Magnetresonanz-Bildgebungsbefunde dieser 2 Entitäten weisen eine beträchtliche Überlappung auf, und sogar bei der histopathologischen Untersuchung ist eine Mischung aus Tumor und Strahlennekrose kein ungewöhnlicher Befund. Bei der Differenzierung zwischen Tumorrezidiv und Strahlennekrose können moderne Bildgebungsmodalitäten, wie die Diffusionstensorbildgebung und die Perfusions-MR-Bildgebung (unter Berechnung bestimmter spezifischer Parameter, wie z. B. des Quotienten der Werte des Apparent Diffusion Coefficient, der relativen Peak-Höhe und des Prozentsatzes der Signalerholung), die Magnetresonanzspektroskopie und die Positronenemissionstomografie als Hilfsmittel eingesetzt werden. In der täglichen Praxis ist für die Abgrenzung der Diagnose ggf. auch die visuelle Beurteilung von diffusionsgewichteten und Perfusionsbildern hilfreich, wobei bei Tumorrezidiven Diffusionseinschränkungen und ein erhöhtes relatives zerebrales Blutvolumen wesentlich häufiger beobachtet werden als bei der Strahlennekrose.

Abstract

Radiation necrosis in the brain commonly occurs in three distinct clinical scenarios, namely, radiation therapy for head and neck malignancy or intracranial extraaxial tumor, stereotactic radiation therapy (including radiosurgery) for brain metastasis, and radiation therapy for primary brain tumors. Knowledge of the radiation treatment plan, amount of brain tissue included in the radiation port, type of radiation, location of the primary malignancy, and amount of time elapsed since radiation therapy is extremely important in determining whether the imaging abnormality represents radiation necrosis or recurrent tumor. Conventional magnetic resonance (MR) imaging findings of these two entities overlap considerably, and even at histopathologic analysis, tumor mixed with radiation necrosis is a common finding. Advanced imaging modalities such as diffusion tensor imaging and perfusion MR imaging (with calculation of certain specific parameters such as apparent diffusion coefficient ratios, relative peak height, and percentage of signal recovery), MR spectroscopy, and positron emission tomography can be useful in differentiating between recurrent tumor and radiation necrosis. In everyday practice, the visual assessment of diffusion-weighted and perfusion images may also be helpful by favoring one diagnosis over the other, with restricted diffusion and an elevated relative cerebral blood volume being seen much more frequently in recurrent tumor than in radiation necrosis.

1 © 2012 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2012; 32: 1343 – 1359. Online published in 10.1148/rg.325125002. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 de Bree R, Mehta DM, Snow GB et al. Intracranial metastases in patients with squamous cell carcinoma of the head and neck. Otolaryngol Head Neck Surg 2001; 124: 217-221
  • 2 International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy. ICRU Report 50. Bethesda, Md: International Commission on Radiation Units and Measurements. 1993
  • 3 Hunt MA, Zelefsky MJ, Wolden S et al. Treatment planning and delivery of intensity-modulated radiation therapy for primary nasopharynx cancer. Int J Radiat Oncol Biol Phys 2001; 49: 623-632
  • 4 Glass JP, Hwang TL, Leavens ME et al. Cerebral radiation necrosis following treatment of extracranial malignancies. Cancer 1984; 54: 1966-1972
  • 5 Chan YL, Leung SF, King AD et al. Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 1999; 213: 800-807
  • 6 Packer RJ, Boyett JM, Zimmerman RA et al. Outcome of children with brain stem gliomas after treatment with 7800 cGy of hyperfractionated radiotherapy: a Childrens Cancer Group Phase I/II Trial. Cancer 1994; 74: 1827-1834
  • 7 Friedman DP, Morales RE, Goldman HW. MR imaging findings after stereotactic radiosurgery using the gamma knife. AJR Am J Roentgenol 2001; 176: 1589-1595
  • 8 Kondziolka D, Lunsford LD. Radiosurgery of meningiomas. Neurosurg Clin N Am 1992; 3 : 219-230
  • 9 Dequesada IM, Quisling RG, Yachnis A et al. Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery 2008; 63: 898-903 ; discussion 904
  • 10 Barajas RF, Chang JS, Sneed PK et al. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2009; 30: 367-372
  • 11 Chao ST, Suh JH, Raja S et al. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 2001; 96: 191-197
  • 12 Barajas Jr RF, Chang JS, Segal MR et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009; 253: 486-496
  • 13 Ruben JD, Dally M, Bailey M et al. Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 2006; 65: 499-508
  • 14 Kumar AJ, Leeds NE, Fuller GN et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000; 217: 377-384
  • 15 Mullins ME, Barest GD, Schaefer PW et al. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol 2005; 26: 1967-1972
  • 16 Asao C, Korogi Y, Kitajima M et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 2005; 26: 1455-1460
  • 17 Hein PA, Eskey CJ, Dunn JF et al. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 2004; 25: 201-209
  • 18 Xu JL, Li YL, Lian JM et al. Distinction between postoperative recurrent glioma and radiation injury using MR diffusion tensor imaging. Neuroradiology 2010; 52: 1193-1199
  • 19 Sugahara T, Korogi Y, Tomiguchi S et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 2000; 21: 901-909
  • 20 Hu LS, Baxter LC, Smith KA et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009; 30: 552-558
  • 21 Plotkin M, Eisenacher J, Bruhn H et al. 123I-IMT SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. J Neurooncol 2004; 70: 49-58
  • 22 Sundgren PC. MR spectroscopy in radiation injury. AJNR Am J Neuroradiol 2009; 30: 1469-1476
  • 23 Ricci PE, Karis JP, Heiserman JE et al. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography?. AJNR Am J Neuroradiol 1998; 19: 407-413
  • 24 Chen W, Cloughesy T, Kamdar N et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005; 46: 945-952
  • 25 Nestle U, Weber W, Hentschel M et al. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009; 54: R1-R25