Semin Thromb Hemost 2013; 39(06): 613-620
DOI: 10.1055/s-0033-1349223
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Combined Deficiency of Coagulation Factors V and VIII: An Update

Chunlei Zheng
1   Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
,
Bin Zhang
1   Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
› Author Affiliations
Further Information

Publication History

Publication Date:
12 July 2013 (online)

Abstract

Combined deficiency of factor V (FV) and FVIII (F5F8D) is an autosomal recessive bleeding disorder characterized by simultaneous decreases of both coagulation factors. This review summarizes recent reports on the clinical presentations, treatments, and molecular mechanism of F5F8D. Genetic studies identified LMAN1 and MCFD2 as causative genes for this disorder, revealing a previously unknown intracellular transport pathway shared by the two important blood coagulation factors. LMAN1 and MCFD2 form a Ca2+-dependent cargo receptor complex that functions in the transport of FV/FVIII from the endoplasmic reticulum (ER) to the Golgi. Disrupting the LMAN1-MCFD2 receptor, complex formation is the primary molecular defect of missense mutations leading to F5F8D. The EF-hand domains of MCFD2 are necessary and sufficient for the interactions with both LMAN1 and FV/FVIII. Similarly, the carbohydrate recognition domain of LMAN1 contains distinct and separable binding sites for both MCFD2 and FV/FVIII. Therefore, FV and FVIII likely carry duel sorting signals that are separately recognized by LMAN1 and MCFD2 and necessary for the efficient ER-to-Golgi transport. FV and FVIII likely bind LMAN1 through the high-mannose N-linked glycans under the higher Ca2+ conditions in the ER and dissociate in the lower Ca2+ environment of the ER–Golgi intermediate compartment.

 
  • References

  • 1 Oeri J, Matter M, Isenschmid H, Hauser F, Koller F. Angeborener mangel an faktor V (parahaemophilie) verbunden mit echter haemophilie A bein zwei brudern. Med Probl Paediatr 1954; 1: 575-588
  • 2 Nichols WC, Seligsohn U, Zivelin A , et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93 (1) 61-70
  • 3 Zhang B, Cunningham MA, Nichols WC , et al. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat Genet 2003; 34 (2) 220-225
  • 4 Spreafico M, Peyvandi F. Combined Factor V and Factor VIII Deficiency. Semin Thromb Hemost 2009; 35 (4) 390-399
  • 5 Zhang B. Recent developments in the understanding of the combined deficiency of FV and FVIII. Br J Haematol 2009; 145 (1) 15-23
  • 6 Viswabandya A, Baidya S, Nair SC , et al. Clinical manifestations of combined factor V and VIII deficiency: a series of 37 cases from a single center in India. Am J Hematol 2010; 85 (7) 538-539
  • 7 Mansouritorgabeh H, Rezaieyazdi Z, Pourfathollah AA, Rezai J, Esamaili H. Haemorrhagic symptoms in patients with combined factors V and VIII deficiency in north-eastern Iran. Haemophilia 2004; 10 (3) 271-275
  • 8 Peyvandi F, Tuddenham EG, Akhtari AM, Lak M, Mannucci PM. Bleeding symptoms in 27 Iranian patients with the combined deficiency of factor V and factor VIII. Br J Haematol 1998; 100 (4) 773-776
  • 9 Seligsohn U, Zivelin A, Zwang E. Combined factor V and factor VIII deficiency among non-Ashkenazi Jews. N Engl J Med 1982; 307 (19) 1191-1195
  • 10 Mansouritorghabeh H, Banihashem A, Modaresi A, Manavifar L. Circumcision in males with bleeding disorders. Mediterr J Hematol Infect Dis 2013; 5 (1) e2013004
  • 11 Abdullah WZ, Ismail R, Nasir A, Mohamad N, Hassan R. Developmental haemostasis for factor V and factor VIII levels in neonates: a case report of spontaneous cephalhaematoma. Fetal Pediatr Pathol 2013; 32 (2) 77-81
  • 12 Bolton-Maggs PH, Perry DJ, Chalmers EA , et al. The rare coagulation disorders—review with guidelines for management from the United Kingdom Haemophilia Centre Doctors' Organisation. Haemophilia 2004; 10 (5) 593-628
  • 13 Mansouritorghabeh H, Rezaieyazdi Z, Bagheri M. Successful use of factor VIII concentrate and fresh frozen plasma for four dental extractions in an individual with combined factor V and VIII deficiency. Transfus Med Hemother 2009; 36 (2) 138-139
  • 14 Oukkache B, El Graoui O, Zafad S. Combined factor V and VIII deficiency and pregnancy. Int J Hematol 2012; 96 (6) 786-788
  • 15 Guglielmone H, Minoldo S, Jarchum G. Response to the DDAVP test in a patient with combined deficiency of factor V and factor VIII. Haemophilia 2009; 15 (3) 838-839
  • 16 Di Marzio I, Iuliani O, Malizia R , et al. Successful use of recombinant FVIIa in combined factor V and FVIII deficiency with surgical bleeding resistant to substitutive treatment. A case report. Haemophilia 2011; 17 (1) 160-161
  • 17 Nakamura M, Yamashita T, Yajima J , et al. Long-term safety and efficacy of sirolimus-eluting stents in Japanese patients: a single-center cohort study. J Invasive Cardiol 2009; 21 (10) 526-531
  • 18 Wenaweser P, Dörffler-Melly J, Imboden K , et al. Stent thrombosis is associated with an impaired response to antiplatelet therapy. J Am Coll Cardiol 2005; 45 (11) 1748-1752
  • 19 Patel AJ, Liu H-H, Lager RA, Malkovska V, Zhang B. Successful percutaneous coronary intervention in a patient with combined deficiency of FV and FVIII due to novel compound heterozygous mutations in LMAN1. Haemophilia 2013; 19: 607-610
  • 20 Zhang B, Spreafico M, Zheng C , et al. Genotype-phenotype correlation in combined deficiency of factor V and factor VIII. Blood 2008; 111 (12) 5592-5600
  • 21 Zhang B, McGee B, Yamaoka JS , et al. Combined deficiency of factor V and factor VIII is due to mutations in either LMAN1 or MCFD2. Blood 2006; 107 (5) 1903-1907
  • 22 Abdallah HE, Gouider E, Amor MB, Jlizi A, Meddeb B, Elgaaied A. Molecular analysis in two Tunisian families with combined factor V and factor VIII deficiency. Haemophilia 2010; 16 (5) 801-804
  • 23 Ge J, Xue F, Gu DS , et al. [Combined deficiency of factors V and VIII caused by a novel compound heterozygous mutation of gene Lman1]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18 (1) 185-190
  • 24 Hejer E, Adnen LM, Asma J, Ibtihel M, Benammar-Elgaaied A, Gouider E. Identification of a novel mutation in the MCFD2 gene in a Tunisian family with combined factor V and VIII deficiency. Tunis Med 2012; 90 (4) 343-344
  • 25 Zhu M, Das V, Zheng C, Majumdar S, Zhang B. A synonymous mutation in LMAN1 creates an ectopic splice donor site and causes combined deficiency of FV and FVIII. J Thromb Haemost 2012; 10: 2407-2409
  • 26 Nyfeler B, Kamiya Y, Boehlen F , et al. Deletion of 3 residues from the C-terminus of MCFD2 affects binding to ERGIC-53 and causes combined factor V and factor VIII deficiency. Blood 2008; 111 (3) 1299-1301
  • 27 Khoriaty R, Vasievich MP, Ginsburg D. The COPII pathway and hematologic disease. Blood 2012; 120 (1) 31-38
  • 28 Lee MC, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 2005; 122 (4) 605-617
  • 29 Appenzeller-Herzog C, Hauri HP. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 2006; 119 (Pt 11) 2173-2183
  • 30 Baines AC, Zhang B. Receptor-mediated protein transport in the early secretory pathway. Trends Biochem Sci 2007; 32 (8) 381-388
  • 31 Dancourt J, Barlowe C. Protein sorting receptors in the early secretory pathway. Annu Rev Biochem 2010; 79: 777-802
  • 32 Nyfeler B, Reiterer V, Wendeler MW , et al. Identification of ERGIC-53 as an intracellular transport receptor of alpha1-antitrypsin. J Cell Biol 2008; 180 (4) 705-712
  • 33 Appenzeller C, Andersson H, Kappeler F, Hauri HP. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1999; 1 (6) 330-334
  • 34 Nyfeler B, Zhang B, Ginsburg D, Kaufman RJ, Hauri HP. Cargo selectivity of the ERGIC-53/MCFD2 transport receptor complex. Traffic 2006; 7 (11) 1473-1481
  • 35 Nufer O, Kappeler F, Guldbrandsen S, Hauri HP. ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains. J Cell Sci 2003; 116 (Pt 21) 4429-4440
  • 36 Zhang B, Kaufman RJ, Ginsburg D. LMAN1 and MCFD2 form a cargo receptor complex and interact with coagulation factor VIII in the early secretory pathway. J Biol Chem 2005; 280 (27) 25881-25886
  • 37 Zheng C, Liu HH, Zhou J, Zhang B. EF-hand domains of MCFD2 mediate interactions with both LMAN1 and coagulation factor V or VIII. Blood 2010; 115 (5) 1081-1087
  • 38 Zheng C, Liu HH, Yuan S, Zhou J, Zhang B. Molecular basis of LMAN1 in coordinating LMAN1-MCFD2 cargo receptor formation and ER-to-Golgi transport of FV/FVIII. Blood 2010; 116 (25) 5698-5706
  • 39 Nishio M, Kamiya Y, Mizushima T , et al. Structural basis for the cooperative interplay between the two causative gene products of combined factor V and factor VIII deficiency. Proc Natl Acad Sci U S A 2010; 107 (9) 4034-4039
  • 40 Wigren E, Bourhis JM, Kursula I, Guy JE, Lindqvist Y. Crystal structure of the LMAN1-CRD/MCFD2 transport receptor complex provides insight into combined deficiency of factor V and factor VIII. FEBS Lett 2010; 584 (5) 878-882
  • 41 Velloso LM, Svensson K, Pettersson RF, Lindqvist Y. The crystal structure of the carbohydrate-recognition domain of the glycoprotein sorting receptor p58/ERGIC-53 reveals an unpredicted metal-binding site and conformational changes associated with calcium ion binding. J Mol Biol 2003; 334 (5) 845-851
  • 42 Guy JE, Wigren E, Svärd M, Härd T, Lindqvist Y. New insights into multiple coagulation factor deficiency from the solution structure of human MCFD2. J Mol Biol 2008; 381 (4) 941-955
  • 43 Elmahmoudi H, Wigren E, Laatiri A , et al. Analysis of newly detected mutations in the MCFD2 gene giving rise to combined deficiency of coagulation factors V and VIII. Haemophilia 2011; 17 (5) e923-e927
  • 44 Yamada T, Fujimori Y, Suzuki A , et al. A novel missense mutation causing abnormal LMAN1 in a Japanese patient with combined deficiency of factor V and factor VIII. Am J Hematol 2009; 84 (11) 738-742
  • 45 Zheng C, Richard CP, Das V , et al. Structural characterization of carbohydrate binding by LMAN1 provides new insight into the endoplasmic reticulum export of FV and FVIII. J Biol Chem 2013; (Epub ahead of print)
  • 46 Appenzeller-Herzog C, Roche AC, Nufer O, Hauri HP. pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J Biol Chem 2004; 279 (13) 12943-12950
  • 47 Paroutis P, Touret N, Grinstein S. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda) 2004; 19: 207-215
  • 48 Montero M, Alvarez J, Scheenen WJ, Rizzuto R, Meldolesi J, Pozzan T. Ca2+ homeostasis in the endoplasmic reticulum: coexistence of high and low [Ca2+] subcompartments in intact HeLa cells. J Cell Biol 1997; 139 (3) 601-611
  • 49 Pezzati R, Bossi M, Podini P, Meldolesi J, Grohovaz F. High-resolution calcium mapping of the endoplasmic reticulum-Golgi-exocytic membrane system. Electron energy loss imaging analysis of quick frozen-freeze dried PC12 cells. Mol Biol Cell 1997; 8 (8) 1501-1512
  • 50 Kawasaki N, Ichikawa Y, Matsuo I , et al. The sugar-binding ability of ERGIC-53 is enhanced by its interaction with MCFD2. Blood 2008; 111 (4) 1972-1979
  • 51 Zhang B, Zheng C, Zhu M , et al. Mice deficient in LMAN1 exhibit FV and FVIII deficiencies and liver accumulation of α1-antitrypsin. Blood 2011; 118 (12) 3384-3391
  • 52 Roeckel N, Woerner SM, Kloor M , et al. High frequency of LMAN1 abnormalities in colorectal tumors with microsatellite instability. Cancer Res 2009; 69 (1) 292-299
  • 53 Nagarajan N, Bertrand D, Hillmer AM , et al. Whole-genome reconstruction and mutational signatures in gastric cancer. Genome Biol 2012; 13 (12) R115
  • 54 Mages J, Freimüller K, Lang R , et al. Proteins of the secretory pathway govern virus productivity during lytic gammaherpesvirus infection. J Cell Mol Med 2008; 12 (5B) 1974-1989
  • 55 Hao H, Kim DS, Klocke B , et al. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis. PLoS Genet 2012; 8 (4) e1002649
  • 56 Haines DS, Lee JE, Beauparlant SL , et al. Protein interaction profiling of the p97 adaptor UBXD1 points to a role for the complex in modulating ERGIC-53 trafficking. Mol Cell Proteomics 2012; 11 (6) 016444
  • 57 Qin SY, Kawasaki N, Hu D, Tozawa H, Matsumoto N, Yamamoto K. Subcellular localization of ERGIC-53 under endoplasmic reticulum stress condition. Glycobiology 2012; 22 (12) 1709-1720