Planta Med 2013; 79(12): 1024-1030
DOI: 10.1055/s-0033-1350617
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

6-C-Methyl Flavonoids Isolated from Pinus densata Inhibit the Proliferation and Promote the Apoptosis of the HL-60 Human Promyelocytic Leukaemia Cell Line

Rongcai Yue
1   School of Pharmacy, Second Military Medical University, Shanghai, China
,
Bo Li
1   School of Pharmacy, Second Military Medical University, Shanghai, China
,
Yunheng Shen
1   School of Pharmacy, Second Military Medical University, Shanghai, China
,
Huawu Zeng
1   School of Pharmacy, Second Military Medical University, Shanghai, China
,
Bo Li
1   School of Pharmacy, Second Military Medical University, Shanghai, China
,
Hu Yuan
2   School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
,
Yiren He
1   School of Pharmacy, Second Military Medical University, Shanghai, China
,
Lei Shan
1   School of Pharmacy, Second Military Medical University, Shanghai, China
,
Weidong Zhang
1   School of Pharmacy, Second Military Medical University, Shanghai, China
2   School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
› Author Affiliations
Further Information

Publication History

received 17 January 2013
revised 06 June 2013

accepted 17 June 2013

Publication Date:
22 July 2013 (online)

Abstract

Three structurally related 6-C-methyl flavonoids isolated from Pinus densata, including 5,4′-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone (PD1), 5,7,4′-trihydroxy-3,8-dimethoxy-6-C-methylflavone (PD2), and 5,7,4′-trihydroxy-3-methoxy-6-C-methylflavone (PD3), were tested for their ability to inhibit the proliferation and promote the apoptosis of the HL-60 human leukaemia cell line. Cytotoxicity assays in the HL-60 human cancer cell line demonstrated that 5,4′-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone exhibited the most potent cytotoxicity of the three structurally related 6-C-methyl flavonoids. 5,4′-Dihydroxy-3,7,8-trimethoxy-6-C-methylflavone inhibited the proliferation of HL-60 cells in a dose-dependent manner with an IC50 of 7.91 µM (48 h treatment). Furthermore, 5,4′-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone-induced apoptosis was associated with mitochondrial membrane disruption and cytochome c release. Flow cytometry analyses revealed an increase in the hypodiploid population in 5,4′-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone-treated HL-60 cells. Treatment with a concentration of 5,4′-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone that induced apoptosis activated caspase-3 but did not activate caspase-1. A caspase-3 inhibitor (Ac-DEVD-CHO), but not a caspase-1 inhibitor (Ac-YVAD-CHO), reversed the cytotoxic effects of 5,4′-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone in HL-60 cells. These data demonstrated that 5,4′-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone effectively induced the apoptosis of HL-60 cells and exhibited significant anticancer activity via the mitochondrial caspase-3-dependent apoptosis pathway.

Supporting Information

 
  • References

  • 1 Williams RJ, Spencer JPE, Rice-Evans C. Flavonoids: antioxidants or signalling molecules?. Free Radic Biol Med 2004; 36: 838-849
  • 2 Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S. How relevant are flavonoids as antioxidants in plants?. Trends Plant Sci 2009; 14: 125-132
  • 3 Cushnie T, Hamilton VES, Lamb AJ. Assessment of the antibacterial activity of selected flavonoids and consideration of discrepancies between previous reports. Microbiol Res 2003; 158: 281-289
  • 4 Cushnie T, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005; 26: 343-356
  • 5 Cárdenas M, Marder M, Blank VC, Roguin LP. Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Biorg Med Chem 2006; 14: 2966-2971
  • 6 Parajuli P, Joshee N, Rimando AM, Mittal S, Yadav AK. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med 2009; 75: 41-48
  • 7 Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000; 52: 673-751
  • 8 García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 2009; 58: 537-552
  • 9 De Carvalho MG, Cranchi DC, De Carvalho AG. Chemical Constituents from Pinus strobus var. Chiapensis . J Braz Chem Soc 1996; 7: 187-191
  • 10 Fang JM, Chang CF, Cheng YS. Flavonoids from Pinus morrisonicola . Phytochemistry 1987; 26: 2559-2561
  • 11 Jung MJ, Choi JH, Chung HY, Jung JH, Choi JS. A new C-methylated flavonoid glycoside from Pinus densiflora . Fitoterapia 2001; 72: 943-945
  • 12 Jung MJ, Jung HA, Kang SS, Hwang GS, Choi JS. A new abietic acid-type diterpene glucoside from the needles of Pinus densiflora . Arch Pharm Res 2009; 32: 1699-1704
  • 13 Kwon JH, Kim JH, Choi SE, Park KH, Lee MW. Inhibitory effects of phenolic compounds from needles of Pinus densiflora on nitric oxide and PGE2 production. Arch Pharm Res 2010; 33: 2011-2016
  • 14 Resurreccion-Magno MHC, Villasenor IM, Harada N, Monde K. Antihyperglycaemic flavonoids from Syzygium samarangense (Blume) Merr. and Perry. Phytother Res 2005; 19: 246-251
  • 15 Dao TT, Tung BT, Nguyen PH, Thuong PT, Yoo SS, Kim EH, Kim SK, Oh WK. C-Methylated flavonoids from Cleistocalyx operculatus and their inhibitory effects on novel influenza A (H1N1) neuraminidase. J Nat Prod 2010; 73: 1636-1642
  • 16 Song Z, Chen W, Du X, Zhang H, Lin L, Xu H. Chemical constituents of Picea neoveitchii . Phytochemistry 2011; 72: 490-494
  • 17 Pick A, Muller H, Mayer R, Haenisch B, Pajeva IK, Weight M, Bonisch H, Muller CE, Wiese M. Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Biorg Med Chem 2011; 19: 2090-2102
  • 18 Zeng F, Wang W, Wu Y, Dey M, Ye M, Avery MA, Khan IA, Guo D. Two prenylated and C-methylated flavonoids from Tripterygium wilfordii . Planta Med 2010; 76: 1596-1599
  • 19 Park SY, Lim JY, Jeong W, Hong SS, Yang YT, Hwang BY, Lee D. C-methylflavonoids isolated from Callistemon lanceolatus protect PC12 cells against Abeta-induced toxicity. Planta Med 2010; 76: 863-868
  • 20 Abou-Zaid M, Dumas M, Chauret D, Watson A, Thompson D. C-methyl flavonols from the fungus Colletotrichum dematium f.sp. epilobii . Phytochemistry 1997; 45: 957-961
  • 21 Rabesa ZA, Voirin B. A new flavonic C-methyl aglycon, 6-C-methyl-3-O-methylkaempferol isolated from Alluaudia dumosa . Tetrahedron Lett 1978; 19: 3717-3718
  • 22 Hanahan D. The hallmarks of cancer. Cell 2000; 100: 57-70
  • 23 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674
  • 24 Kreeger PK, Mandhana R, Alford SK, Haigis KM, Lauffenburger DA. RAS mutations affect tumor necrosis factor–induced apoptosis in colon carcinoma cells via ERK-modulatory negative and positive feedback circuits along with non-ERK pathway effects. Cancer Res 2009; 69: 8191-8199
  • 25 Fulda S. Modulation of apoptosis by natural products for cancer therapy. Planta Med 2010; 76: 1075-1079
  • 26 Hu W, Kavanagh JJ. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 2003; 4: 721-729
  • 27 Heemels MT, Dhand R, Allen L. The biochemistry of apoptosis. Nature 2000; 407: 770-776
  • 28 Isoldi MC, Visconti MA, Castrucci AML. Anti-cancer drugs: molecular mechanisms of action. Mini Rev Med Chem 2005; 5: 685-695
  • 29 Kroemer G, Martin SJ. Caspase-independent cell death. Nat Med 2005; 11: 725-730
  • 30 Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004; 5: 897-907
  • 31 Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15: 269-290
  • 32 Youssef DT, Ramadan M, Khalifa A. Acetophenones, a chalcone, a chromone and flavonoids from Pancratium maritimum . Phytochemistry 1998; 49: 2579-2583
  • 33 Babajide OJ, Babajide OO, Daramola AO, Mabusela WT. Flavonols and an oxychromonol from Piliostigma reticulatum . Phytochemistry 2008; 69: 2245-2250
  • 34 Wollenweber E, Wehde R, Dörr M, Lang G, Stevens JF. C-Methyl-flavonoids from the leaf waxes of some Myrtaceae. Phytochemistry 2000; 55: 965-970
  • 35 Huq F, Misra LN. An alkenol and C-methylated flavones from Callistemon lanceolatus leaves. Planta Med 2007; 63: 369-370
  • 36 Kadota S, Basnet P, Hase K, Namba T. Matteuorienate A and B, two new and potent aldose reductase inhibitors from Matteuccia orientalis (Hook.) Trev. Chem Pharm Bull 1994; 42: 1712-1714
  • 37 Basnet P, Kadota S, Hase K, Namba T. Five new C-methyl flavonoids, the potent aldose reductase inhibitors from Matteuccia orientalis TREV. Chem Pharm Bull 1995; 43: 1558-1564
  • 38 Harborne JB, Greenham J, Williams CA, Eagles J, Markham KR. Ten isoprenylated and C-methylated flavonoids from the leaves of three Vellozia species. Phytochemistry 1993; 34: 219-226
  • 39 Benyahia S, Benayache S, Benayache F, Quintana J, López M, León F, Hernández JC, Estévez F, Bermejo J. Isolation from Eucalyptus occidentalis and identification of a new kaempferol derivative that induces apoptosis in human myeloid leukemia cells. J Nat Prod 2004; 67: 527-531
  • 40 Lee WR, Shen SC, Lin HY, Hou WC, Yang LL, Chen YC. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca2+-dependent endonuclease. Biochem Pharmacol 2002; 63: 225-236
  • 41 Chen YC, Shen SC, Lee WR, Lin HY, Ko CH, Shih CM, Yang LL. Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p 21 protein in hepatocellular carcinoma cells SK-HEP-1. Arch Toxicol 2002; 76: 351-359
  • 42 Wang IK, LinShiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 1999; 35: 1517-1525