Aktuelle Rheumatologie 2013; 38(04): 231-236
DOI: 10.1055/s-0033-1351304
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Zusammenspiel von Schmerz, Entzündung und Nervensystem bei Arthritis

Interaction of Pain, Inflammation and the Nervous System in the Course of Arthritis
H.-G. Schaible
Further Information

Publication History

Publication Date:
23 July 2013 (online)

Zusammenfassung

Das Zusammenspiel von Entzündung und Nervensystem hat Bedeutung für die subjektiven Folgen der Arthritis, bestehend aus Schmerz und anderen subjektiven Symptomen, z. B. Schlafstörungen, Abgeschlagenheit, aber auch für die Ausprägung der Entzündung, da das Nervensystem über verschiedene neuronale Wege Entzündungsvorgänge modifizieren kann. Bei Entzündung wird das nozizeptive System für Reize sensibilisiert. Durch Veränderungen der zentralnervösen Verarbeitung kann der Schmerz in seinem Charakter verändert werden, und es können Komorbiditäten wie Depression und Angst auftreten. Sensibilisierungsvorgänge fördern auch die o.g. efferenten neuronalen Effekte. Bei der Induktion entzündungstypischer neuronaler Veränderungen spielen neben anderen Mechanismen auch proinflammatorische Zytokine eine Rolle, wobei verschiedene Zytokine an den Nervenzellen unterschiedlich wirken. Im experimentellen Modell der Antigen-induzierten Arthritis hat Tumornekrosefaktor-α eine funktionelle Bedeutung für die mechanische und thermische Hyperalgesie, Interleukin-6 und Interleukin-17 fördern vor allem die mechanische Hyperalgesie, während Interleukin-1β die thermische Hyper­algesie fördert. Als Folge der peripheren Entzündung wird Interleukin-6 auch im Rückenmark freigesetzt, und es wirkt dort als Schmerzverstärker. Ein Beitrag weiterer spinaler Zytokine ist wahrscheinlich. Zur Beurteilung der klinischen Relevanz von Entzündungen sollte nicht nur der Entzündungsprozess erfasst werden, sondern auch die subjektive Symptomatik als Ausdruck der begleitenden neuronalen Prozesse, wodurch sich therapeutische Ansätze möglicherweise optimieren lassen.

Abstract

The interaction between inflammation and the nervous system is important for the subjective consequences of arthritis such as pain and other symptoms, e. g., sleep disturbances, fatigue, and also for the expression of the inflammation because the nervous system can modify inflammatory processes through different neuronal pathways. In the course of inflammation the nociceptive system is sensitised for stimuli. Furthermore, the pain can be modified in its character by changes in the processing in the central nervous system, and co-morbidities such as depression and anxiety can occur. The processes of sensitisation also promote the efferent neuronal effects mentioned above. In the induction of inflammatory changes in the nervous system pro-inflammatory cytokines play a role, in addition to other mechanisms, and different cytokines seem to exert different actions on neurons. In the model of antigen-induced arthritis, tumour necrosis factor-α is functionally important for the induction of mechanical and thermal hyperalgesia, interleukin-6 and interleukin-17 promote mainly the generation of mechanical hyperalgesia whereas interleukin-1β mainly promotes thermal hyperalgesia. As a consequence of peripheral inflammation interleukin-6 is released in the spinal cord, and it acts as a pain amplifier. A contribution of other spinal cytokines is likely. In order to judge the clinical relevance of inflammation not only the inflammatory process should be monitored but also the subjective symtoms, as a readout parameter of arthritis-induced neuronal processes. This may help to optimise therapeutic approaches.

 
  • Literatur

  • 1 Schaible H-G. Joint Pain – Basic mechanisms. In: Wall and Melzack’s Textbook of Pain. 6th ed. Edited by McMahon SB, Tracey I, Koltzenburg M, Turk DC. ­Philadelphia: Elsevier Saunders; 2013: 609-619
  • 2 Schaible H-G, Grubb BD. Afferent and spinal mechanisms of joint pain. Pain 1993; 55: 5-54
  • 3 Arendt-Nielsen L, Nie H, Laursen MB et al. Sensitization in patients with painful knee osteoarthritis. Pain 2010; 149: 573-581
  • 4 Hendiani JA, Westlund KN, Lawand N et al. Mechanical sensation and pain thresholds in patients with chronic arthropathies. J Pain 2003; 4: 203-211
  • 5 Kulkarni B, Bentley DE, Elliott R et al. Arthritic pain is processed in brain areas concerned with emotions and fear. Arthritis Rheum 2007; 56: 1345-1354
  • 6 Neugebauer V, Li W. Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input. J Neurophysiol 2002; 87: 103-112
  • 7 Phillips K, Clauw DJ. Central pain mechanisms in the rheumatic diseases. Arthritis Rheum 2013; 65: 291-302
  • 8 Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest 2010; 120: 3779-3787
  • 9 Kosek E, Ordeberg G. Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following surgical pain relief. Pain 2000; 88: 69-78
  • 10 Clauw DJ, Katz P. The overlap between fibromyalgia and inflammatory rheumatic disease: when and why does it occur?. J Clin Rheumatol 1995; 1: 335-342
  • 11 Straub RH, Cutolo M. Involvement of the hypothalamic-pituitary-adrenal/gonadal axis and the peripheral nervous system in rheumatoid arthritis. Arthritis Rheum 2001; 44: 493-507
  • 12 Schaible H-G, Richter F, Ebersberger A et al. Joint pain. Exp Brain Res 2009; 196: 153-162
  • 13 McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011; 365: 2205-2219
  • 14 Boettger MK, Hensellek S, Richter F et al. Antinociceptive effects of TNF-α neutralization in a rat model of antigen-induced arthritis. Arthritis Rheumatism 2008; 58: 2368-2378
  • 15 Richter F, Natura G, Loeser S et al. Tumor necrosis factor-α (TNF-α) causes persistent sensitization of joint nociceptors for mechanical stimuli. Arthritis Rheum 2010; 62: 3806-3814
  • 16 Segond von Banchet G, Boettger MK, Fischer N et al. Experimental arthritis causes tumor necrosis factor-α dependent infiltration of macrophages in rat dorsal root ganglia which correlates with pain-related behavior. Pain 2009; 145: 151-159
  • 17 Hensellek S, Brell P, Schaible H-G et al. The cytokine TNFα increases the proportion of DRG neurones expressing the TRPV1 receptor via the TNFR1 receptor and ERK activation. Mol Cell Neurosci 2007; 36: 381-391
  • 18 Schaible H-G, Ebersberger A, Natura G. Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines. Arthritis Res Ther 2011; 13: 210
  • 19 Inglis JJ, Nissim A, Lees DM et al. The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation. Arthritis Res Ther 2005; 7: R807-R816
  • 20 Inglis JJ, Notley CA, Essex D et al. Collagen-induced arthritis as a model of hyperalgesia: functional and cellular analysis of the analgesic actions of tumor necrosis factor blockade. Arthritis Rheum 2007; 56: 4015-4023
  • 21 Hess A, Axmann R, Rech J et al. Blockade of TNFα rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci USA 2011; 108: 3731-3736
  • 22 Rech J, Hess A, Finzel S et al. Association of brain functional magnetic resonance activity with response to tumor necrosis factor inhibition in rheumatoid arthritis. Arthritis Rheum 2013; 65: 425-333
  • 23 McMahon SB, Malcangio M. Current challenges in glia-pain biology. Neuron 2009; 64: 46-54
  • 24 Boettger MK, Weber K, Grossmann D et al. Spinal TNF-α neutralization reduces peripheral inflammation and hyperalgesia and suppresses autonomic responses in experimental arthritis. A role for spinal TNF-α during induction and maintenance of peripheral inflammation. Arthritis Rheum 2010; 62: 1308-1318
  • 25 Boyle DL, Jones TL, Hammaker D et al. Regulation of peripheral inflammation by spinal p38 MAP kinase in rats. PLoS Med 2006; 3: e338
  • 26 Boettger MK, Weber K, Gajda M et al. Spinally applied ketamine or morphine attenuate peripheral inflammation and hyperalgesia in acute and chronic phases of experimental arthritis. Brain Behav Immun 2010; 24: 474-485
  • 27 Waldburger J-M, Firestein GS. Regulation of peripheral inflammation by the central nervous system. Curr Rheumatol Rep 2010; 12: 370-378
  • 28 Ebbinghaus M, Gajda M, Boettger MK et al. The anti-inflammatory effects of sympathectomy in murine antigen-induced arthritis are associated with a reduction of Th1 and Th17 responses. Ann Rheum Dis 2010; 71: 253-261
  • 29 Härle P, Mobius D, Carr DJ. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum 2005; 52: 1305-1313
  • 30 Härle P, Pongratz G, Albrecht J. An early sympathetic nervous system influence exacerbates collagen-induced arthritis via CD4+CD25+ cells. Arthritis Rheum 2008; 58: 2347-2355
  • 31 Brenn D, Richter F, Schaible H-G. Sensitization of unmyelinated sensory fibres of the joint nerve to mechanical stimuli by interleukin-6 in the rat. An inflammatory mechanism of joint pain. Arthritis Rheum 2007; 56: 351-359
  • 32 Boettger MK, Leuchtweis J, Kümmel D et al. Differential effects of locally and systemically administered soluble glycoprotein 130 on pain and inflammation in experimental arthritis. Arthritis Res Ther 2010; 12: R140
  • 33 Vazquez E, Kahlenbach J, Segond von Banchet G et al. Spinal interleukin-6 is an amplifier of arthritic pain. Arthritis Rheum 2012; 64: 2233-2242
  • 34 So A, De Smedt T, Revaz S et al. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 2007; 9: R28
  • 35 Lampa J, Westman M, Kadetoff D et al. Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice. Proc Natl Acad Sci USA 2012; 109: 12728-12733
  • 36 Ebbinghaus M, Uhlig B, Richter F et al. The role of interleukin-1β in arthritic pain: main involvement in thermal but not in mechanical hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum 2012; 64: 3897-3907
  • 37 Hoffmeister C, Trevisan G, Rossato MF et al. Role of TRPV1 in nociception and edema induced by monosodium urate crystals in rats. Pain 2011; 152: 1777-1788
  • 38 Segond von Banchet G, Fischer N, Uhlig B et al. Molecular effects of Interleukin-1β on dorsal root ganglion neurons: prevention of ligand-induced internalization of the bradykinin 2 receptor and downregulation of G protein-coupled receptor kinase 2. Mol Cell Neurosci 2011; 46: 262-271
  • 39 Eijkelkamp N, Heijnen CJ, Willemen HLDM et al. GRK2: A novel cell-specific regulator of severity and duration of inflammatory pain. J Neurosci 2010; 30: 2138-2149
  • 40 Alber G, Kamradt T. Regulation of protective and pathogenic Th17 responses. Curr Immunol Rev 2007; 3: 3-16
  • 41 Lubberts E. IL-17/Th17 targeting: On the road to prevent chronic destructive arthritis?. Cytokine 2008; 41: 84-91
  • 42 Richter F, Natura G, Ebbinghaus M et al. Interleukin-17 sensitizes joint nociceptors for mechanical stimuli and contributes to arthritic pain through neuronal IL-17 receptors in rodents. Arthritis Rheum 2012; 64: 4125-4134
  • 43 Segond von Banchet G, Boettger MK, König C et al. Neuronal IL-17 receptor upregulates TRPV4 but not TRPV1 receptors in DRG neurons and mediates mechanical but not thermal hyperalgesia. Mol Cell Neuroscience 2013; 52: 152-160
  • 44 Alessandri-Haber N, Dina OA, Joseph EK et al. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci 2006; 26: 3864-3874