Semin Respir Crit Care Med 2013; 34(05): 689-699
DOI: 10.1055/s-0033-1355444
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Experimental Models of Right Heart Failure: A Window for Translational Research in Pulmonary Hypertension

Julien Guihaire
1   Laboratory of Surgical Research, Marie Lannelongue Hospital, University of Paris Sud, Le Plessis Robinson, France
,
Harm Jan Bogaard
2   Department of Pulmonary Medicine, VU University Medical Center, Amsterdam, The Netherlands
,
Erwan Flécher
3   Department of Thoracic and Cardiovascular Surgery, Pontchaillou Hospital, University of Rennes 1, Rennes, France
,
Pierre-Emmanuel Noly
1   Laboratory of Surgical Research, Marie Lannelongue Hospital, University of Paris Sud, Le Plessis Robinson, France
,
Olaf Mercier
1   Laboratory of Surgical Research, Marie Lannelongue Hospital, University of Paris Sud, Le Plessis Robinson, France
,
François Haddad
4   Division of Cardiovascular Medicine, Stanford University, Palo Alto, California
,
Elie Fadel
1   Laboratory of Surgical Research, Marie Lannelongue Hospital, University of Paris Sud, Le Plessis Robinson, France
› Author Affiliations
Further Information

Publication History

Publication Date:
13 September 2013 (online)

Abstract

The right ventricle (RV) faces major changes in loading conditions associated with cardiovascular and pulmonary vascular disorders. Despite major pharmacological advances since the last decade, pulmonary arterial hypertension remains a deadly disease mainly secondary to the development of right ventricular failure (RVF). Several experimental models of RVF have been developed over the past three decades providing a particular insight in RV pathophysiology. Mechanisms involved in the transition from RV adaptive hypertrophy to maladaptive remodeling and failure in conditions of chronic RV pressure or volume overload are of a great interest but not yet completely understood. Further investigations are needed to find new therapeutic approaches for RVF. Current animal models and emerging concepts of translational RV research will be detailed in this review.

 
  • References

  • 1 Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 2005; 6 (11) 826-835
  • 2 Zong P, Tune JD, Downey HF. Mechanisms of oxygen demand/supply balance in the right ventricle. Exp Biol Med (Maywood) 2005; 230 (8) 507-519
  • 3 D'Alonzo GE, Barst RJ, Ayres SM , et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 1991; 115 (5) 343-349
  • 4 Ghio S, Gavazzi A, Campana C , et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 2001; 37 (1) 183-188
  • 5 Ghio S, Klersy C, Magrini G , et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol 2010; 140 (3) 272-278
  • 6 Guazzi M, Arena R. Pulmonary hypertension with left-sided heart disease. Nat Rev Cardiol 2010; 7 (11) 648-659
  • 7 Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008; 117 (13) 1717-1731
  • 8 Haddad F, Kudelko K, Mercier O, Vrtovec B, Zamanian RT, de Jesus Perez V. Pulmonary hypertension associated with left heart disease: characteristics, emerging concepts, and treatment strategies. Prog Cardiovasc Dis 2011; 54 (2) 154-167
  • 9 Provencher S, Hervé P, Sitbon O, Humbert M, Simonneau G, Chemla D. Changes in exercise haemodynamics during treatment in pulmonary arterial hypertension. Eur Respir J 2008; 32 (2) 393-398
  • 10 Benza RL, Miller DP, Gomberg-Maitland M , et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 2010; 122 (2) 164-172
  • 11 Humbert M, Sitbon O, Chaouat A , et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 2010; 122 (2) 156-163
  • 12 Ghio S, Pazzano AS, Klersy C , et al. Clinical and prognostic relevance of echocardiographic evaluation of right ventricular geometry in patients with idiopathic pulmonary arterial hypertension. Am J Cardiol 2011; 107 (4) 628-632
  • 13 Forfia PR, Fisher MR, Mathai SC , et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 2006; 174 (9) 1034-1041
  • 14 van Wolferen SA, Marcus JT, Boonstra A , et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 2007; 28 (10) 1250-1257
  • 15 van Wolferen SA, Marcus JT, Westerhof N , et al. Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J 2008; 29 (1) 120-127
  • 16 van Wolferen SA, van de Veerdonk MC, Mauritz GJ , et al. Clinically significant change in stroke volume in pulmonary hypertension. Chest 2011; 139 (5) 1003-1009
  • 17 Vonk Noordegraaf A. The image of pulmonary hypertension. J Bras Pneumol 2011; 37 (3) 283-284
  • 18 Vonk Noordegraaf A, Galiè N. The role of the right ventricle in pulmonary arterial hypertension. Eur Respir Rev 2011; 20 (122) 243-253
  • 19 Vonk Noordegraaf A, Westerhof N. Right ventricular ejection fraction and NT-proBNP are both indicators of wall stress in pulmonary hypertension. Eur Respir J 2007; 29 (4) 622-623
  • 20 Raymond RJ, Hinderliter AL, Willis PW , et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 2002; 39 (7) 1214-1219
  • 21 Oikawa M, Kagaya Y, Otani H , et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 2005; 45 (11) 1849-1855
  • 22 Nagaya N, Nishikimi T, Uematsu M , et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 2000; 102 (8) 865-870
  • 23 Reesink HJ, Tulevski II, Marcus JT , et al. Brain natriuretic peptide as noninvasive marker of the severity of right ventricular dysfunction in chronic thromboembolic pulmonary hypertension. Ann Thorac Surg 2007; 84 (2) 537-543
  • 24 Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 2009; 297 (6) L1013-L1032
  • 25 Bonnet S, Michelakis ED, Porter CJ , et al. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 2006; 113 (22) 2630-2641
  • 26 Rouleau JL, Kapuku G, Pelletier S , et al. Cardioprotective effects of ramipril and losartan in right ventricular pressure overload in the rabbit: importance of kinins and influence on angiotensin II type 1 receptor signaling pathway. Circulation 2001; 104 (8) 939-944
  • 27 Thompson JT, Rackley MS, O'Brien TX. Upregulation of the cardiac homeobox gene Nkx2-5 (CSX) in feline right ventricular pressure overload. Am J Physiol 1998; 274 (5, Pt 2) H1569-H1573
  • 28 Bishop JE, Rhodes S, Laurent GJ, Low RB, Stirewalt WS. Increased collagen synthesis and decreased collagen degradation in right ventricular hypertrophy induced by pressure overload. Cardiovasc Res 1994; 28 (10) 1581-1585
  • 29 Bogaard HJ, Natarajan R, Henderson SC , et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 2009; 120 (20) 1951-1960
  • 30 Gomez-Arroyo J, Mizuno S, Szczepanek K , et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 2013; 6 (1) 136-144
  • 31 Kay JM, Keane PM, Suyama KL, Gauthier D. Angiotensin converting enzyme activity and evolution of pulmonary vascular disease in rats with monocrotaline pulmonary hypertension. Thorax 1982; 37 (2) 88-96
  • 32 Hessel MH, Steendijk P, den Adel B, Schutte CI, van der Laarse A. Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Physiol Heart Circ Physiol 2006; 291 (5) H2424-H2430
  • 33 Akhavein F, St-Michel EJ, Seifert E, Rohlicek CV. Decreased left ventricular function, myocarditis, and coronary arteriolar medial thickening following monocrotaline administration in adult rats. J Appl Physiol 2007; 103 (1) 287-295
  • 34 Tada Y, Laudi S, Harral J , et al. Murine pulmonary response to chronic hypoxia is strain specific. Exp Lung Res 2008; 34 (6) 313-323
  • 35 Stenmark KR, Fasules J, Hyde DM , et al. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4,300 m. J Appl Physiol 1987; 62 (2) 821-830
  • 36 Crossno Jr JT, Garat CV, Reusch JEB , et al. Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol 2007; 292 (4) L885-L897
  • 37 Dempsey EC, Wick MJ, Karoor V , et al. Neprilysin null mice develop exaggerated pulmonary vascular remodeling in response to chronic hypoxia. Am J Pathol 2009; 174 (3) 782-796
  • 38 Bogaard HJ, Natarajan R, Mizuno S , et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med 2010; 182 (5) 652-660
  • 39 Taraseviciene-Stewart L, Kasahara Y, Alger L , et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 2001; 15 (2) 427-438
  • 40 Abe K, Toba M, Alzoubi A , et al. Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 2010; 121 (25) 2747-2754
  • 41 Sakao S, Tatsumi K. The effects of antiangiogenic compound SU5416 in a rat model of pulmonary arterial hypertension. Respiration 2011; 81 (3) 253-261
  • 42 Sukbuntherng J, Cropp G, Hannah A, Wagner GS, Shawver LK, Antonian L. Pharmacokinetics and interspecies scaling of a novel VEGF receptor inhibitor, SU5416. J Pharm Pharmacol 2001; 53 (12) 1629-1636
  • 43 Taraseviciene-Stewart L, Nicolls MR, Kraskauskas D , et al. Absence of T cells confers increased pulmonary arterial hypertension and vascular remodeling. Am J Respir Crit Care Med 2007; 175 (12) 1280-1289
  • 44 Nicolls MR, Mizuno S, Taraseviciene-Stewart L , et al. New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis. Pulm Circ 2012; 2 (4) 434-442
  • 45 Engelfriet PM, Duffels MG, Möller T , et al. Pulmonary arterial hypertension in adults born with a heart septal defect: the Euro Heart Survey on adult congenital heart disease. Heart 2007; 93 (6) 682-687
  • 46 Simonneau G, Robbins IM, Beghetti M , et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2009; 54 (1, Suppl): S43-S54
  • 47 Hopkins WE, Waggoner AD. Severe pulmonary hypertension without right ventricular failure: the unique hearts of patients with Eisenmenger syndrome. Am J Cardiol 2002; 89 (1) 34-38
  • 48 Rendas A, Lennox S, Reid L. Aorta-pulmonary shunts in growing pigs. Functional and structural assessment of the changes in the pulmonary circulation. J Thorac Cardiovasc Surg 1979; 77 (1) 109-118
  • 49 De Canniere D, Stefanidis C, Brimioulle S, Naeije R. Effects of a chronic aortopulmonary shunt on pulmonary hemodynamics in piglets. J Appl Physiol 1994; 77 (4) 1591-1596
  • 50 Rondelet B, Kerbaul F, Motte S , et al. Bosentan for the prevention of overcirculation-induced experimental pulmonary arterial hypertension. Circulation 2003; 107 (9) 1329-1335
  • 51 Yuan SM, Shinfeld A, Raanani E. The Blalock-Taussig shunt. J Card Surg 2009; 24 (2) 101-108
  • 52 Loukanov T, Geiger R, Agrawal R. Animal models related to congenital heart disease and clinical research in pulmonary hypertension. Cardiology 2010; 116 (1) 18-25
  • 53 Gorenflo M, Herpel E, Ullmann MV , et al. Pulmonary vascular changes in piglets with increased pulmonary blood flow and pressure. Virchows Arch 2007; 450 (6) 643-652
  • 54 Thambo JB, Roubertie F, De Guillebon M , et al. Validation of an animal model of right ventricular dysfunction and right bundle branch block to create close physiology to postoperative tetralogy of Fallot. Int J Cardiol 2012; 154 (1) 38-42
  • 55 Kuehne T, Saeed M, Gleason K , et al. Effects of pulmonary insufficiency on biventricular function in the developing heart of growing swine. Circulation 2003; 108 (16) 2007-2013
  • 56 Basquin A, Pineau E, Galmiche L, Bonnet D, Sidi D, Boudjemline Y. Transcatheter valve insertion in a model of enlarged right ventricular outflow tracts. J Thorac Cardiovasc Surg 2010; 139 (1) 198-208
  • 57 Pengo V, Lensing AW, Prins MH , et al; Thromboembolic Pulmonary Hypertension Study Group. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 2004; 350 (22) 2257-2264
  • 58 Madani MM, Auger WR, Pretorius V , et al. Pulmonary endarterectomy: recent changes in a single institution's experience of more than 2,700 patients. Ann Thorac Surg 2012; 94 (1) 97-103 , discussion 103
  • 59 Jenkins DP, Madani M, Mayer E , et al. Surgical treatment of chronic thromboembolic pulmonary hypertension. Eur Respir J 2013; 41 (3) 735-742
  • 60 Mercier O, Tivane A, Raoux F , et al. Reliable piglet model of chronic thrombo-embolic pulmonary hypertension. Am J Respir Crit Care Med 2011; 183: A2415
  • 61 Guihaire J, Haddad F, Mercier O , et al. The relationship between right ventricular-pulmonary arterial coupling and right ventricular function in a porcine model of chronic thrombo-embolic pulmonary hypertension. Am J Respir Crit Care Med 2012; 185: A3472
  • 62 Brooks H, Kirk ES, Vokonas PS, Urschel CW, Sonnenblick EH. Performance of the right ventricle under stress: relation to right coronary flow. J Clin Invest 1971; 50 (10) 2176-2183
  • 63 Guihaire J, Haddad F, Mercier O , et al. Improvement in right ventricular function after surgical treatment of chronic thrombo-embolic pulmonary hypertension in a porcine model. J Heart Lung Transplant 2012; 31 (4) S79-S80
  • 64 West J, Fagan K, Steudel W , et al. Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 2004; 94 (8) 1109-1114
  • 65 Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 2012; 122 (12) 4306-4313
  • 66 Beppu H, Malhotra R, Beppu Y, Lepore JJ, Parmacek MS, Bloch KD. BMP type II receptor regulates positioning of outflow tract and remodeling of atrioventricular cushion during cardiogenesis. Dev Biol 2009; 331 (2) 167-175
  • 67 de Vroomen M, Cardozo RH, Steendijk P, van Bel F, Baan J. Improved contractile performance of right ventricle in response to increased RV afterload in newborn lamb. Am J Physiol Heart Circ Physiol 2000; 278 (1) H100-H105
  • 68 Watts JA, Marchick MR, Kline JA. Right ventricular heart failure from pulmonary embolism: key distinctions from chronic pulmonary hypertension. J Card Fail 2010; 16 (3) 250-259
  • 69 Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 2009; 135 (3) 794-804
  • 70 Lowes BD, Minobe W, Abraham WT , et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest 1997; 100 (9) 2315-2324
  • 71 Bull TM, Coldren CD, Geraci MW, Voelkel NF. Gene expression profiling in pulmonary hypertension. Proc Am Thorac Soc 2007; 4 (1) 117-120
  • 72 Waehre A, Vistnes M, Sjaastad I , et al. Chemokines regulate small leucine-rich proteoglycans in the extracellular matrix of the pressure-overloaded right ventricle. J Appl Physiol 2012; 112 (8) 1372-1382
  • 73 Voelkel NF, Gomez-Arroyo J, Abbate A, Bogaard HJ, Nicolls MR. Pathobiology of pulmonary arterial hypertension and right ventricular failure. Eur Respir J 2012; 40 (6) 1555-1565
  • 74 Rondelet B, Dewachter C, Kerbaul F , et al. Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur Heart J 2012; 33 (8) 1017-1026
  • 75 Tuder RM, Davis LA, Graham BB. Targeting energetic metabolism: a new frontier in the pathogenesis and treatment of pulmonary hypertension. Am J Respir Crit Care Med 2012; 185 (3) 260-266
  • 76 Ruiter G, Ying Wong Y, de Man FS , et al. Right ventricular oxygen supply parameters are decreased in human and experimental pulmonary hypertension. J Heart Lung Transplant 2013; 32 (2) 231-240
  • 77 Wrigley BJ, Lip GY, Shantsila E. The role of monocytes and inflammation in the pathophysiology of heart failure. Eur J Heart Fail 2011; 13 (11) 1161-1171
  • 78 Watts JA, Gellar MA, Obraztsova M, Kline JA, Zagorski J. Role of inflammation in right ventricular damage and repair following experimental pulmonary embolism in rats. Int J Exp Pathol 2008; 89 (5) 389-399
  • 79 Bozkurt B, Kribbs SB, Clubb Jr FJ , et al. Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998; 97 (14) 1382-1391
  • 80 Nagendran J, Archer SL, Soliman D , et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 2007; 116 (3) 238-248
  • 81 Nagendran J, Sutendra G, Paterson I , et al. Endothelin axis is upregulated in human and rat right ventricular hypertrophy. Circ Res 2013; 112 (2) 347-354
  • 82 Kerbaul F, Brimioulle S, Rondelet B, Dewachter C, Hubloue I, Naeije R. How prostacyclin improves cardiac output in right heart failure in conjunction with pulmonary hypertension. Am J Respir Crit Care Med 2007; 175 (8) 846-850
  • 83 Zhao L, Chen CN, Hajji N , et al. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 2012; 126 (4) 455-467
  • 84 Bogaard HJ, Mizuno S, Hussaini AA , et al. Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J Respir Crit Care Med 2011; 183 (10) 1402-1410
  • 85 de Man FS, Tu L, Handoko ML , et al. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 186 (8) 780-789
  • 86 Umar S, de Visser YP, Steendijk P , et al. Allogenic stem cell therapy improves right ventricular function by improving lung pathology in rats with pulmonary hypertension. Am J Physiol Heart Circ Physiol 2009; 297 (5) H1606-H1616
  • 87 Bove T, Bouchez S, De Hert S , et al. Acute and chronic effects of dysfunction of right ventricular outflow tract components on right ventricular performance in a porcine model: implications for primary repair of tetralogy of fallot. J Am Coll Cardiol 2012; 60 (1) 64-71
  • 88 Kerbaul F, Gariboldi V, Giorgi R , et al. Effects of levosimendan on acute pulmonary embolism-induced right ventricular failure. Crit Care Med 2007; 35 (8) 1948-1954
  • 89 Nagendran J, Gurtu V, Fu DZ , et al. A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J Thorac Cardiovasc Surg 2008; 136 (1) 168-178 , e1–e3
  • 90 Borgdorff MA, Bartelds B, Dickinson MG , et al. Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure-loaded right ventricle. Eur J Heart Fail 2012; 14 (9) 1067-1074
  • 91 Schäfer S, Ellinghaus P, Janssen W , et al. Chronic inhibition of phosphodiesterase 5 does not prevent pressure-overload-induced right-ventricular remodelling. Cardiovasc Res 2009; 82 (1) 30-39
  • 92 Mouchaers KT, Schalij I, Versteilen AM , et al. Endothelin receptor blockade combined with phosphodiesterase-5 inhibition increases right ventricular mitochondrial capacity in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2009; 297 (1) H200-H207
  • 93 Schermuly RT, Kreisselmeier KP, Ghofrani HA , et al. Antiremodeling effects of iloprost and the dual-selective phosphodiesterase 3/4 inhibitor tolafentrine in chronic experimental pulmonary hypertension. Circ Res 2004; 94 (8) 1101-1108
  • 94 van Albada ME, Berger RM, Niggebrugge M, van Veghel R, Cromme-Dijkhuis AH, Schoemaker RG. Prostacyclin therapy increases right ventricular capillarisation in a model for flow-associated pulmonary hypertension. Eur J Pharmacol 2006; 549 (1–3) 107-116
  • 95 Yuyama H, Koakutsu A, Fujiyasu N , et al. Effects of selective endothelin ET(A) receptor antagonists on endothelin-1-induced potentiation of cancer pain. Eur J Pharmacol 2004; 492 (2–3) 177-182
  • 96 Ahn BH, Park HK, Cho HG , et al. Estrogen and enalapril attenuate the development of right ventricular hypertrophy induced by monocrotaline in ovariectomized rats. J Korean Med Sci 2003; 18 (5) 641-648
  • 97 Piao L, Fang YH, Cadete VJ , et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med (Berl) 2010; 88 (1) 47-60
  • 98 Redout EM, van der Toorn A, Zuidwijk MJ , et al. Antioxidant treatment attenuates pulmonary arterial hypertension-induced heart failure. Am J Physiol Heart Circ Physiol 2010; 298 (3) H1038-H1047
  • 99 Kojonazarov B, Sydykov A, Pullamsetti SS , et al. Effects of multikinase inhibitors on pressure overload-induced right ventricular remodeling. Int J Cardiol 2012;
  • 100 Mouchaers KT, Schalij I, de Boer MA , et al. Fasudil reduces monocrotaline-induced pulmonary arterial hypertension: comparison with bosentan and sildenafil. Eur Respir J 2010; 36 (4) 800-807