Subscribe to RSS
DOI: 10.1055/s-0033-1357207
Neurophysiologische und bildgebende Prädiktoren der Funktionserholung nach Schlaganfall
Neurophysiological and Neuroimaging Predictors of Functional Recovery after StrokePublication History
Publication Date:
19 December 2013 (online)
Zusammenfassung
Die Funktionserholung nach Schlaganfall wird zu großen Teilen von der Reorganisation zerebraler Netzwerke bestimmt. Diese Prozesse können im Menschen in-vivo mit nicht-invasiven Messverfahren dargestellt werden. Insbesondere die Magnetresonanztomografie (MRT) und die transkranielle Magnetstimulation (TMS) haben wesentlich dazu beigetragen, den Zusammenhang zwischen struktureller Läsion, kortikaler Reorganisation und funktioneller Erholung zu verstehen. In diesem Übersichtsartikel fassen wir wesentliche Befunde aus struktureller und funktioneller MRT sowie TMS-Studien hinsichtlich der Reorganisation des motorischen Systems und funktioneller Erholung zusammen. Darüber hinaus zeigen wir, wie Informationen aus MRT und TMS dazu genutzt werden können, um das Erholungspotenzial der Patienten vorherzusagen. Zukünftig könnten diese Verfahren dazu eingesetzt werden, um rehabilitative Therapie zu individualisieren und das Outcome der Patienten zu verbessern.
Abstract
Recovery of function after stroke is strongly driven by the reorganization of neural networks. These processes can be investigated in-vivo in patients by means of non-invasive brain mapping techniques. Especially approaches like magnetic resonance imaging (MRI) and transcranial magnetic stimulation (TMS) enable insights into how changes in neural networks relate to functional recovery. We here review recent structural and functional MRI as well as TMS studies on the neural mechanisms underlying motor recovery after stroke. Furthermore, we demonstrate how these techniques can be used to predict the potential for recovery in patients. In the future, the combination of MRI and TMS might help to individualize rehabilitative treatments in patients according to specific disturbances in brain structure and activity in order to improve the final outcome.
-
Literatur
- 1 WHO . The global buden of disease: 2004 update. Geneva: World Health Organization 2004; 2004
- 2 Veerbeek JM, Kwakkel G, van Wegen EE et al. Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke 2011; 42: 1482-1488
- 3 Stinear CM, Barber PA, Petoe M et al. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 2012; 135: 2527-2535
- 4 Prabhakaran S, Zarahn E, Riley C et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabilitation and Neural Repair 2008; 22: 64-71
- 5 Nijland RH, van Wegen EE, Harmeling-van der Wel BC et al. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study. Stroke 2010; 41: 745-750
- 6 Coupar F, Pollock A, Rowe P et al. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clinical Rehabilitation 2012; 26: 291-313
- 7 Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clinical Neurophysiology: official journal of the International Federation of Clinical Neurophysiology 2006; 117: 1641-1659
- 8 Ward NS, Brown MM, Thompson AJ et al. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003; 126: 2476-2496
- 9 Grefkes C, Eickhoff SB, Nowak DA et al. Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 2008; 41: 1382-1394
- 10 Le Bihan D, Johansen-Berg H. Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 2012; 61: 324-341
- 11 Jbabdi S, Johansen-Berg H. Tractography: where do we go from here?. Brain Connectivity 2011; 1: 169-183
- 12 Alexander LD, Black SE, Gao F et al. Correlating lesion size and location to deficits after ischemic stroke: the influence of accounting for altered peri-necrotic tissue and incidental silent infarcts. Behavioral and Brain Functions 2010; 6: 6
- 13 Englander RN, Netsky MG, Adelman LS. Location of human pyramidal tract in the internal capsule: anatomic evidence. Neurology 1975; 25: 823-826
- 14 Stinear CM, Barber PA, Smale PR et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2007; 130: 170-180
- 15 Schaechter JD, Fricker ZP, Perdue KL et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Human Brain Mapping 2009; 30: 3461-3474
- 16 Wang LE, Tittgemeyer M, Imperati D et al. Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study. Human Brain Mapping 2012; 33: 2941-2956
- 17 Radlinska B, Ghinani S, Leppert IR et al. Diffusion tensor imaging, permanent pyramidal tract damage, and outcome in subcortical stroke. Neurology 2010; 75: 1048-1054
- 18 Puig J, Pedraza S, Blasco G et al. Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke. American Journal of Neuroradiology 2011; 32: 857-863
- 19 Riley JD, Le V, Der-Yeghiaian L et al. Anatomy of stroke injury predicts gains from therapy. Stroke 2011; 42: 421-426
- 20 Day BL, Dressler D, Maertens de Noordhout A et al. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. The Journal of Physiology 1989; 412: 449-473
- 21 DiLazzaro V, Ziemann U. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Frontiers in Neural Circuits 2013; 7: 18
- 22 Heald A, Bates D, Cartlidge NE et al. Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain 1993; 116 (Pt 6) 1371-1385
- 23 Hendricks HT, Zwarts MJ, Plat EF et al. Systematic review for the early prediction of motor and functional outcome after stroke by using motor-evoked potentials. Archives of Physical Medicine and Rehabilitation 2002; 83: 1303-1308
- 24 Catano A, Houa M, Caroyer JM et al. Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. Electroencephalography and Clinical Neurophysiology 1996; 101: 233-239
- 25 Thickbroom GW, Byrnes ML, Archer SA et al. Motor outcome after subcortical stroke: MEPs correlate with hand strength but not dexterity. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 2002; 113: 2025-2029
- 26 Traversa R, Cicinelli P, Oliveri M et al. Neurophysiological follow-up of motor cortical output in stroke patients. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 2000; 111: 1695-1703
- 27 Byrnes ML, Thickbroom GW, Phillips BA et al. Long-term changes in motor cortical organisation after recovery from subcortical stroke. Brain Research 2001; 889: 278-287
- 28 Pennisi G, Alagona G, Rapisarda G et al. Transcranial magnetic stimulation after pure motor stroke. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 2002; 113: 1536-1543
- 29 Manganotti P, Patuzzo S, Cortese F et al. Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 2002; 113: 936-943
- 30 Classen J, Schnitzler A, Binkofski F et al. The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic. Brain 1997; 120 (Pt 4) 605-619
- 31 Kwon YH, Son SM, Lee J et al. Combined study of transcranial magnetic stimulation and diffusion tensor tractography for prediction of motor outcome in patients with corona radiata infarct. Journal of Rehabilitation Medicine: Official Journal of the UEMS European Board of Physical and Rehabilitation Medicine 2011; 43: 430-434
- 32 Hess G, Donoghue JP. Long-term depression of horizontal connections in rat motor cortex. The European Journal of Neuroscience 1996; 8: 658-665
- 33 Nudo RJ. Recovery after damage to motor cortical areas. Current Opinion in Neurobiology 1999; 9: 740-747
- 34 Nudo RJ, Wise BM, SiFuentes F et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996; 272: 1791-1794
- 35 Carmichael ST, Wei L, Rovainen CM et al. New patterns of intracortical projections after focal cortical stroke. Neurobiology of Disease 2001; 8: 910-922
- 36 Dancause N, Barbay S, Frost SB et al. Extensive cortical rewiring after brain injury. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 2005; 25: 10167-10179
- 37 Cramer SC, Riley JD. Neuroplasticity and brain repair after stroke. Current Opinion in Neurology 2008; 21: 76-82
- 38 Kujirai T, Caramia MD, Rothwell JC et al. Corticocortical inhibition in human motor cortex. The Journal of Physiology 1993; 471: 501-519
- 39 Liepert J, Storch P, Fritsch A et al. Motor cortex disinhibition in acute stroke. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 2000; 111: 671-676
- 40 Cicinelli P, Pasqualetti P, Zaccagnini M et al. Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study. Stroke 2003; 34: 2653-2658
- 41 Swayne OB, Rothwell JC, Ward NS et al. Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cerebral Cortex 2008; 18: 1909-1922
- 42 Ferbert A, Priori A, Rothwell JC et al. Interhemispheric inhibition of the human motor cortex. The Journal of Physiology 1992; 453: 525-546
- 43 Murase N, Duque J, Mazzocchio R et al. Influence of interhemispheric interactions on motor function in chronic stroke. Annals of Neurology 2004; 55: 400-409
- 44 Ogawa S, Lee TM, Kay AR et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America 1990; 87: 9868-9872
- 45 Marshall RS, Perera GM, Lazar RM et al. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 2000; 31: 656-661
- 46 Ward NS, Brown MM, Thompson AJ et al. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003; 126: 2476-2496
- 47 Gerloff C, Bushara K, Sailer A et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 2006; 129: 791-808
- 48 Grefkes C, Nowak DA, Eickhoff SB et al. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Annals of Neurology 2008; 63: 236-246
- 49 Rehme AK, Fink GR, von Cramon DY et al. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cerebral Cortex 2011; 21: 756-768
- 50 Rehme AK, Eickhoff SB, Rottschy C et al. Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage 2012; 59: 2771-2782
- 51 Nishimura Y, Onoe H, Morichika Y et al. Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science 2007; 318: 1150-1155
- 52 Ward NS, Brown MM, Thompson AJ et al. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 2003; 126: 1430-1448
- 53 Calautti C, Naccarato M, Jones PS et al. The relationship between motor deficit and hemisphere activation balance after stroke: A 3 T fMRI study. Neuroimage 2007; 34: 322-331
- 54 Stagg CJ, Bachtiar V, O'Shea J et al. Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke. Brain 2012; 135: 276-284
- 55 Nowak DA, Grefkes C, Dafotakis M et al. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Archives of Neurology 2008; 65: 741-747
- 56 Ameli M, Grefkes C, Kemper F et al. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Annals of Neurology 2009; 66: 298-309
- 57 Cardenas-Morales L, Volz LJ, Michely J et al. Network Connectivity and Individual Responses to Brain Stimulation in the Human Motor System. Cerebral Cortex 2013; DOI: 10.1093/cercor/bht023.
- 58 Cramer SC, Parrish TB, Levy RM et al. Predicting functional gains in a stroke trial. Stroke 2007; 38: 2108-2114
- 59 Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping 1994; 2: 56-78
- 60 Eickhoff SB, Grefkes C. Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clinical EEG and Neuroscience 2011; 42: 107-121
- 61 Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 2011; 134: 1264-1276
- 62 Rehme AK, Grefkes C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. The Journal of Physiology 2013; 591: 17-31
- 63 Biswal B, Yetkin FZ, Haughton VM et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine 1995; 34: 537-541
- 64 Carter AR, Astafiev SV, Lang CE et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Annals of Neurology 2010; 67: 365-375
- 65 Wang L, Yu C, Chen H et al. Dynamic functional reorganization of the motor execution network after stroke. Brain 2010; 133: 1224-1238
- 66 Warren JE, Crinion JT, Lambon Ralph MA et al. Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain 2009; 132: 3428-3442
- 67 He BJ, Snyder AZ, Vincent JL et al. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 2007; 53: 905-918
- 68 Park CH, Chang WH, Ohn SH et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 2011; 42: 1357-1362
- 69 Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage 2003; 19: 1273-1302
- 70 Rehme AK, Eickhoff SB, Wang LE et al. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 2011; 55: 1147-1158
- 71 Wang LE, Fink GR, Diekhoff S et al. Noradrenergic enhancement improves motor network connectivity in stroke patients. Annals of Neurology 2011; 69: 375-388
- 72 Grefkes C, Nowak DA, Wang LE et al. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 2010; 50: 233-242
- 73 Delvaux V, Alagona G, Gerard P et al. Post-stroke reorganization of hand motor area: a 1-year prospective follow-up with focal transcranial magnetic stimulation. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 2003; 114: 1217-1225
- 74 Saur D, Ronneberger O, Kummerer D et al. Early functional magnetic resonance imaging activations predict language outcome after stroke. Brain 2010; 133: 1252-1264
- 75 Grefkes C, Ward NS. Cortical Reorganization After Stroke: How Much and How Functional?. The Neuroscientist 2013; DOI: 10.1177/1073858413491147.