Semin Thromb Hemost 2013; 39(08): 881-895
DOI: 10.1055/s-0033-1357483
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Brain Neoplasms and Coagulation

Nathalie Magnus
1   McGill University, The Research Institute of the McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
,
Esterina D'Asti
1   McGill University, The Research Institute of the McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
,
Delphine Garnier
1   McGill University, The Research Institute of the McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
,
Brian Meehan
1   McGill University, The Research Institute of the McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
,
Janusz Rak
1   McGill University, The Research Institute of the McGill University Health Centre, Montreal Children's Hospital, Montreal, Quebec, Canada
› Author Affiliations
Further Information

Publication History

Publication Date:
09 October 2013 (online)

Abstract

Brain vasculature is uniquely programmed to protect central nervous system tissues and respond to their metabolic demands. These functions are subverted during the development of primary and metastatic brain tumors, resulting in vascular perturbations that are thought to contribute to progression and comorbidities of the underlying disease, including thrombosis and hemorrhage. Chronic activation of the coagulation system is particularly obvious in glioblastoma multiforme (GBM), where intratumoral vasoocclusive thrombosis may contribute to hypoxia, pseudopalisading necrosis, and angiogenesis. GBM is also associated with spontaneous or iatrogenic bleeding, and the emission of circulating procoagulants implicated in the unusually high risk of peripheral venous thromboembolism. Tissue factor (TF) expression is elevated in several types of brain tumors, including adult and pediatric GBM, as is the production of TF-containing microparticles (TF-MPs). Both TF expression and its vesicular emission are regulated by tumor microenvironment (e.g., hypoxia), in concert with activated oncogenic and growth factor pathways (RAS, EGFR, MET), as well as the loss of tumor suppressor gene activity (PTEN). Discovery of distinct oncogenic networks led to recognition of unique molecular subtypes within brain tumors, of which GBM (proneural, neural, classical, and mesenchymal), and medulloblastoma (SHH, WNT, group 3, and group 4) exhibit subtype-specific composition of the tumor coagulome. It remains to be established whether mechanisms of thrombosis and biological effects of coagulation in brain tumors are also subtype specific. In this regard, TF pathway represents a paradigm, and its impact on tumor dormancy, inflammation, angiogenesis, formation of cancer stem cell niches, and dissemination is a subject of considerable interest. However, establishing the extent to which TF and TF-MPs contribute to pathogenesis and thromboembolic disease in the context of primary and secondary brain tumors may require molecular stratification of patient populations. We suggest that a better understanding of these molecular linkages may pave the way to a more effective (targeted) therapy, prophylaxis, adjunctive use of anticoagulants, and other agents able to modulate interactions between brain tumors and the coagulation system.

 
  • References

  • 1 Bondy ML, Scheurer ME, Malmer B , et al; Brain Tumor Epidemiology Consortium. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 2008; 113 (7, Suppl): 1953-1968
  • 2 Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008; 359 (5) 492-507
  • 3 Verhaak RG, Hoadley KA, Purdom E , et al; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17 (1) 98-110
  • 4 Phillips HS, Kharbanda S, Chen R , et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006; 9 (3) 157-173
  • 5 Kool M, Korshunov A, Remke M , et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012; 123 (4) 473-484
  • 6 Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci 2007; 8 (8) 610-622
  • 7 Brat DJ, Van Meir EG. Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 2004; 84 (4) 397-405
  • 8 Tehrani M, Friedman TM, Olson JJ, Brat DJ. Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol 2008; 18 (2) 164-171
  • 9 Perry JR. Thromboembolic disease in patients with high-grade glioma. Neuro-oncol 2012; 14 (Suppl. 04) iv73-iv80
  • 10 Thaler J, Ay C, Mackman N , et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thromb Haemost 2012; 10 (7) 1363-1370
  • 11 Sartori MT, Della Puppa A, Ballin A , et al. Prothrombotic state in glioblastoma multiforme: an evaluation of the procoagulant activity of circulating microparticles. J Neurooncol 2011; 104 (1) 225-231
  • 12 Jenkins EO, Schiff D, Mackman N, Key NS. Venous thromboembolism in malignant gliomas. J Thromb Haemost 2010; 8 (2) 221-227
  • 13 Buller HR, van Doormaal FF, van Sluis GL, Kamphuisen PW. Cancer and thrombosis: from molecular mechanisms to clinical presentations. J Thromb Haemost 2007; 5 (Suppl. 01) 246-254
  • 14 Zwicker JI, Trenor III CC, Furie BC, Furie B. Tissue factor-bearing microparticles and thrombus formation. Arterioscler Thromb Vasc Biol 2011; 31 (4) 728-733
  • 15 Hossmann KA. The hypoxic brain. Insights from ischemia research. Adv Exp Med Biol 1999; 474: 155-169
  • 16 Henry-Feugeas MC, Koskas P. Cerebral vascular aging: extending the concept of pulse wave encephalopathy through capillaries to the cerebral veins. Curr Aging Sci 2012; 5 (2) 157-167
  • 17 Kieran MW, Walker D, Frappaz D, Prados M. Brain tumors: from childhood through adolescence into adulthood. J Clin Oncol 2010; 28 (32) 4783-4789
  • 18 Wrensch M, Minn Y, Chew T, Bondy M, Berger MS. Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-oncol 2002; 4 (4) 278-299
  • 19 Zhu Y, Parada LF. The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2002; 2 (8) 616-626
  • 20 Gilbertson RJ, Ellison DW. The origins of medulloblastoma subtypes. Annu Rev Pathol 2008; 3: 341-365
  • 21 Pfister S, Witt O. Pediatric gliomas. Recent Results Cancer Res 2009; 171: 67-81
  • 22 Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 2009; 100 (12) 2235-2241
  • 23 Sturm D, Witt H, Hovestadt V , et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22 (4) 425-437
  • 24 Schwartzentruber J, Korshunov A, Liu XY , et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012; 482 (7384) 226-231
  • 25 Bredel M, Scholtens DM, Yadav AK , et al. NFKBIA deletion in glioblastomas. N Engl J Med 2011; 364 (7) 627-637
  • 26 Li J, Sulman E, Aldape K. Molecular biology of brain tumors. Handb Clin Neurol 2012; 104: 23-34
  • 27 Parsons DW, Jones S, Zhang X , et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321 (5897) 1807-1812
  • 28 Northcott PA, Korshunov A, Pfister SM, Taylor MD. The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 2012; 8 (6) 340-351
  • 29 Calabrese C, Poppleton H, Kocak M , et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11 (1) 69-82
  • 30 Gilbertson RJ, Rich JN. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 2007; 7 (10) 733-736
  • 31 Biernat W, Huang H, Yokoo H, Kleihues P, Ohgaki H. Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol 2004; 14 (2) 131-136
  • 32 Inda MM, Bonavia R, Mukasa A , et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 2010; 24 (16) 1731-1745
  • 33 Snuderl M, Fazlollahi L, Le LP , et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 2011; 20 (6) 810-817
  • 34 Wu X, Northcott PA, Dubuc A , et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 2012; 482 (7386) 529-533
  • 35 Dirks PB. Brain tumor stem cells: bringing order to the chaos of brain cancer. J Clin Oncol 2008; 26 (17) 2916-2924
  • 36 Al-Nedawi K, Meehan B, Micallef J , et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10 (5) 619-624
  • 37 Rak J. Ras oncogenes and tumour vascular interface. In: Thomas-Tikhonenko A, , ed. Cancer Genome and Tumor Microenvironment. New York, NY: Springer; 2009: 133-165
  • 38 Steeg PS, Camphausen KA, Smith QR. Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 2011; 11 (5) 352-363
  • 39 Gril B, Evans L, Palmieri D, Steeg PS. Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies. Eur J Cancer 2010; 46 (7) 1204-1210
  • 40 Schettino C, Bareschino MA, Rossi A , et al. Targeting angiogenesis for treatment of NSCLC brain metastases. Curr Cancer Drug Targets 2012; 12 (3) 289-299
  • 41 Curtis C, Shah SP, Chin SF , et al; METABRIC Group. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486 (7403) 346-352
  • 42 Bos PD, Zhang XH, Nadal C , et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009; 459 (7249) 1005-1009
  • 43 Heyn C, Ronald JA, Ramadan SS , et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 2006; 56 (5) 1001-1010
  • 44 Izraely S, Sagi-Assif O, Klein A , et al. The metastatic microenvironment: brain-residing melanoma metastasis and dormant micrometastasis. Int J Cancer 2012; 131 (5) 1071-1082
  • 45 Folkman J, Kalluri R. Tumor angiogenesis. In: Kufe DW, Pollock RE, Weichselbaum RR, , et al., eds. Cancer Medicine. Hamilton, London: BC Decker Inc.; 2003: 161-194
  • 46 Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473 (7347) 298-307
  • 47 Xi G, Fewel ME, Hua Y, Thompson Jr BG, Hoff JT, Keep RF. Intracerebral hemorrhage: pathophysiology and therapy. Neurocrit Care 2004; 1 (1) 5-18
  • 48 Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol 2012; 181 (4) 1126-1141
  • 49 Maegele M. Coagulopathy after traumatic brain injury: incidence, pathogenesis, and treatment options. Transfusion 2013; 53 (Suppl. 01) 28S-37S
  • 50 Zadeh G, Koushan K, Baoping Q, Shannon P, Guha A. Role of angiopoietin-2 in regulating growth and vascularity of astrocytomas. J Oncol 2010; 2010: 659231
  • 51 D'Haene N, Catteau X, Maris C, Martin B, Salmon I, Decaestecker C. Endothelial hyperplasia and endothelial galectin-3 expression are prognostic factors in primary central nervous system lymphomas. Br J Haematol 2008; 140 (4) 402-410
  • 52 Goldschmidt N, Linetsky E, Shalom E, Varon D, Siegal T. High incidence of thromboembolism in patients with central nervous system lymphoma. Cancer 2003; 98 (6) 1239-1242
  • 53 Gijtenbeek JM, Wesseling P, Maass C, Burgers L, van der Laak JA. Three-dimensional reconstruction of tumor microvasculature: simultaneous visualization of multiple components in paraffin-embedded tissue. Angiogenesis 2005; 8 (4) 297-305
  • 54 Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999; 103 (2) 159-165
  • 55 Döme B, Hendrix MJ, Paku S, Tóvári J, Tímár J. Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. Am J Pathol 2007; 170 (1) 1-15
  • 56 Holash J, Maisonpierre PC, Compton D , et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284 (5422) 1994-1998
  • 57 Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 2010; 10 (2) 138-146
  • 58 Lu J, Ye X, Fan F , et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 2013; 23 (2) 171-185
  • 59 Rak JW, Hegmann EJ, Lu C, Kerbel RS. Progressive loss of sensitivity to endothelium-derived growth inhibitors expressed by human melanoma cells during disease progression. J Cell Physiol 1994; 159 (2) 245-255
  • 60 Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 2003; 3 (6) 411-421
  • 61 Ricci-Vitiani L, Pallini R, Biffoni M , et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010; 468 (7325) 824-828
  • 62 Wang R, Chadalavada K, Wilshire J , et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010; 468 (7325) 829-833
  • 63 Soda Y, Marumoto T, Friedmann-Morvinski D , et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A 2011; 108 (11) 4274-4280
  • 64 Cheng L, Huang Z, Zhou W , et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 2013; 153 (1) 139-152
  • 65 Rodriguez FJ, Orr BA, Ligon KL, Eberhart CG. Neoplastic cells are a rare component in human glioblastoma microvasculature. Oncotarget 2012; 3 (1) 98-106
  • 66 Zhang J, Jiang R, Liu L, Watkins T, Zhang F, Dong JF. Traumatic brain injury-associated coagulopathy. J Neurotrauma 2012; 29 (17) 2597-2605
  • 67 Rogers LR. Cerebrovascular complications in patients with cancer. Semin Neurol 2010; 30 (3) 311-319
  • 68 Prayson NF, Koch P, Angelov L, Prayson RA. Microscopic thrombi in anaplastic astrocytoma predict worse survival?. Ann Diagn Pathol 2011; 15 (6) 389-393
  • 69 Rong Y, Post DE, Pieper RO, Durden DL, Van Meir EG, Brat DJ. PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 2005; 65 (4) 1406-1413
  • 70 Wun T, White RH. Venous thromboembolism (VTE) in patients with cancer: epidemiology and risk factors. Cancer Invest 2009; 27 (Suppl. 01) 63-74
  • 71 Alvarado G, Noor R, Bassett R , et al. Risk of intracranial hemorrhage with anticoagulation therapy in melanoma patients with brain metastases. Melanoma Res 2012; 22 (4) 310-315
  • 72 Ilhan A, Gartner W, Neziri D , et al. Angiogenic factors in plasma of brain tumour patients. Anticancer Res 2009; 29 (2) 731-736
  • 73 Gridley DS, Loredo LN, Slater JD , et al. Pilot evaluation of cytokine levels in patients undergoing radiotherapy for brain tumor. Cancer Detect Prev 1998; 22 (1) 20-29
  • 74 Yu JL, May L, Lhotak V , et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 2005; 105 (4) 1734-1741
  • 75 Wang JG, Geddings JE, Aleman MM , et al. Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood 2012; 119 (23) 5543-5552
  • 76 Gerlach R, Scheuer T, Böhm M , et al. Increased levels of plasma tissue factor pathway inhibitor in patients with glioblastoma and intracerebral metastases. Neurol Res 2003; 25 (4) 335-338
  • 77 Thaler J, Preusser M, Ay C , et al. Intratumoral tissue factor expression and risk of venous thromboembolism in brain tumor patients. Thromb Res 2013; 131 (2) 162-165
  • 78 Ay C, Vormittag R, Dunkler D , et al. D-dimer and prothrombin fragment 1 + 2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2009; 27 (25) 4124-4129
  • 79 Hoke M, Dieckmann K, Koppensteiner R, Schillinger M, Marosi C, Mlekusch W. Prognostic value of plasma d-dimer levels in patients with glioblastoma multiforme - Results from a pilot study. Wien Klin Wochenschr 2011; 123 (7-8) 199-203
  • 80 Ay C, Dunkler D, Pirker R , et al. High D-dimer levels are associated with poor prognosis in cancer patients. Haematologica 2012; 97 (8) 1158-1164
  • 81 Sciacca FL, Ciusani E, Silvani A , et al. Genetic and plasma markers of venous thromboembolism in patients with high grade glioma. Clin Cancer Res 2004; 10 (4) 1312-1317
  • 82 Garnier D, Magnus N, Lee TH , et al. Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. J Biol Chem 2012; 287 (52) 43565-43572
  • 83 Davila M, Amirkhosravi A, Coll E , et al. Tissue factor-bearing microparticles derived from tumor cells: impact on coagulation activation. J Thromb Haemost 2008; 6 (9) 1517-1524
  • 84 van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 2010; 8 (12) 2596-2607
  • 85 Yu J, May L, Milsom C , et al. Contribution of host-derived tissue factor to tumor neovascularization. Arterioscler Thromb Vasc Biol 2008; 28 (11) 1975-1981
  • 86 Mackman N. Triggers, targets and treatments for thrombosis. Nature 2008; 451 (7181) 914-918
  • 87 Ruf W, Disse J, Carneiro-Lobo TC, Yokota N, Schaffner F. Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost 2011; 9 (Suppl. 01) 306-315
  • 88 Rickles FR, Falanga A. Activation of clotting factors in cancer. Cancer Treat Res 2009; 148: 31-41
  • 89 Loynes JT, Zacharski LR. The coagulation system as a target for experimental therapy of human gliomas. Expert Opin Ther Targets 2003; 7 (3) 399-404
  • 90 Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 2008; 9 (5) 453-461
  • 91 Feldkamp MM, Lau N, Rak J, Kerbel RS, Guha A. Normoxic and hypoxic regulation of vascular endothelial growth factor (VEGF) by astrocytoma cells is mediated by Ras. Int J Cancer 1999; 81 (1) 118-124
  • 92 Magnus N, Garnier D, Rak J. Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 2010; 116 (5) 815-818
  • 93 Blouw B, Song H, Tihan T , et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 2003; 4 (2) 133-146
  • 94 Dvorak FH, Rickles FR. Malignancy and hemostasis. In: Coleman RB, Marder VJ, Clowes AW, George JN, Goldhaber SZ, , eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia, PA: Lippincott Williams & Wilkins; 2006: 851-873
  • 95 Bárdos H, Molnár P, Csécsei G, Adány R. Fibrin deposition in primary and metastatic human brain tumours. Blood Coagul Fibrinolysis 1996; 7 (5) 536-548
  • 96 Shoji M, Hancock WW, Abe K , et al. Activation of coagulation and angiogenesis in cancer: immunohistochemical localization in situ of clotting proteins and vascular endothelial growth factor in human cancer. Am J Pathol 1998; 152 (2) 399-411
  • 97 Provençal M, Labbé D, Veitch R , et al. c-Met activation in medulloblastoma induces tissue factor expression and activity: effects on cell migration. Carcinogenesis 2009; 30 (7) 1089-1096
  • 98 Takano S, Tsuboi K, Tomono Y, Mitsui Y, Nose T. Tissue factor, osteopontin, alphavbeta3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression. Br J Cancer 2000; 82 (12) 1967-1973
  • 99 Guan M, Su B, Lu Y. Quantitative reverse transcription-PCR measurement of tissue factor mRNA in glioma. Mol Biotechnol 2002; 20 (2) 123-129
  • 100 Milsom CC, Yu JL, Mackman N , et al. Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 2008; 68 (24) 10068-10076
  • 101 Contrino J, Hair G, Kreutzer DL, Rickles FR. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med 1996; 2 (2) 209-215
  • 102 Mechtcheriakova D, Schabbauer G, Lucerna M, Clauss M, Binder BR, Hofer E ; De Martin R. Specificity, diversity, and convergence in VEGF and TNF-alpha signaling events leading to tissue factor up-regulation via EGR-1 in endothelial cells. FASEB J 2001; 15 (1) 230-242
  • 103 Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood 1997; 89 (7) 2429-2442
  • 104 Milsom C, Yu J, May L , et al. The role of tumor-and host-related tissue factor pools in oncogene-driven tumor progression. Thromb Res 2007; 120 (Suppl. 02) S82-S91
  • 105 Bogdanov VY, Balasubramanian V, Hathcock J, Vele O, Lieb M, Nemerson Y. Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat Med 2003; 9 (4) 458-462
  • 106 van den Berg YW, Osanto S, Reitsma PH, Versteeg HH. The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 2012; 119 (4) 924-932
  • 107 Rak J. Microparticles in cancer. Semin Thromb Hemost 2010; 36 (8) 888-906
  • 108 Falanga A, Gordon SG. Isolation and characterization of cancer procoagulant: a cysteine proteinase from malignant tissue. Biochemistry 1985; 24 (20) 5558-5567
  • 109 Bouffet E, Tabori U, Huang A, Bartels U. Possibilities of new therapeutic strategies in brain tumors. Cancer Treat Rev 2010; 36 (4) 335-341
  • 110 Salmaggi A, Simonetti G, Trevisan E , et al. Perioperative thromboprophylaxis in patients with craniotomy for brain tumours: a systematic review. J Neurooncol 2013; 113 (2) 293-303
  • 111 Reardon DA, Turner S, Peters KB , et al. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw 2011; 9 (4) 414-427
  • 112 Soffietti R, Trevisan E, Rudà R. Targeted therapy in brain metastasis. Curr Opin Oncol 2012; 24 (6) 679-686
  • 113 Vargo JA, Snelling BM, Ghareeb ER , et al. Dural venous sinus thrombosis in anaplastic astrocytoma following concurrent temozolomide and focal brain radiotherapy plus bevacizumab. J Neurooncol 2011; 104 (2) 595-598
  • 114 Bergers G. Proinvasive growth of glioma during VEGF inhibition [abstract]. Presented at: The 12th International Symposium on Anti-Angiogenic Agents (Angio 2010); February 4–6, 2010; San Diego, CA
  • 115 Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009; 15 (3) 232-239
  • 116 Pàez-Ribes M, Allen E, Hudock J , et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009; 15 (3) 220-231
  • 117 Belting M, Ahamed J, Ruf W. Signaling of the tissue factor coagulation pathway in angiogenesis and cancer. Arterioscler Thromb Vasc Biol 2005; 25 (8) 1545-1550
  • 118 Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10 (8) 789-799
  • 119 Gerlinger M, Rowan AJ, Horswell S , et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366 (10) 883-892
  • 120 Croce CM. Oncogenes and cancer. N Engl J Med 2008; 358 (5) 502-511
  • 121 Spyropoulou A, Piperi C, Adamopoulos C, Papavassiliou AG. Deregulated chromatin remodeling in the pathobiology of brain tumors. Neuromolecular Med 2013; 15 (1) 1-24
  • 122 Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 2004; 6 (5) 447-458
  • 123 Mazure NM, Chen EY, Laderoute KR, Giaccia AJ. Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 1997; 90 (9) 3322-3331
  • 124 Koizume S, Jin MS, Miyagi E , et al. Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Res 2006; 66 (19) 9453-9460
  • 125 Kohli M, Williams K, Yao JL , et al. Thrombin expression in prostate: a novel finding. Cancer Invest 2011; 29 (1) 62-67
  • 126 Schulze EB, Hedley BD, Goodale D , et al. The thrombin inhibitor Argatroban reduces breast cancer malignancy and metastasis via osteopontin-dependent and osteopontin-independent mechanisms. Breast Cancer Res Treat 2008; 112 (2) 243-254
  • 127 Meehan B, Dombrovsky A, Lau K , et al. Impact of host ageing on the metastatic phenotype. Mech Ageing Dev 2013; 134 (3–4) 118-129
  • 128 Magnus N, Gerges N, Jabado N, Rak J. Coagulation-related gene expression profile in glioblastoma is defined by molecular disease subtype. J Thromb Haemost 2013; 11 (6) 1197-1200
  • 129 Rak J, Yu JL, Luyendyk J, Mackman N. Oncogenes, trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res 2006; 66 (22) 10643-10646
  • 130 Yu JL, May L, Klement P, Weitz JI, Rak J. Oncogenes as regulators of tissue factor expression in cancer: implications for tumor angiogenesis and anti-cancer therapy. Semin Thromb Hemost 2004; 30 (1) 21-30
  • 131 Tallman MS, Lefèbvre P, Baine RM , et al. Effects of all-trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia. J Thromb Haemost 2004; 2 (8) 1341-1350
  • 132 Boccaccio C, Sabatino G, Medico E , et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature 2005; 434 (7031) 396-400
  • 133 D'Asti E, Huang A, Rak J. Downregulation of tissue factor (TF) in medulloblastoma cells expressing miR-520g. Presented at: Keystone Syposia; March 30, 2012; Snowmass, CO
  • 134 Zhang X, Yu H, Lou JR , et al. MicroRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells. J Biol Chem 2011; 286 (2) 1429-1435
  • 135 Rong Y, Belozerov VE, Tucker-Burden C , et al. Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res 2009; 69 (6) 2540-2549
  • 136 Rong Y, Hu F, Huang R , et al. Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1-independent mechanisms. Cancer Res 2006; 66 (14) 7067-7074
  • 137 D'Asti E, Garnier D, Lee TH , et al. Oncogenic extracellular vesicles in brain tumor progression. Front Physiol 2012; 3 (294) 1-15
  • 138 Walter J, Handel LL, Brodhun M , et al. Expression of coagulation factors and their receptors in tumor tissue and coagulation factor upregulation in peripheral blood of patients with cerebral carcinoma metastases. J Cancer Res Clin Oncol 2012; 138 (1) 141-151
  • 139 Lee AY, Levine MN. Venous thromboembolism and cancer: risks and outcomes. Circulation 2003; 107 (23) (Suppl. 01) I17-I21
  • 140 Northcott PA, Korshunov A, Witt H , et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011; 29 (11) 1408-1414
  • 141 Loof TG, Schmidt O, Herwald H, Theopold U. Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins?. J Innate Immun 2011; 3 (1) 34-40
  • 142 Ruf W. Redundant signaling of tissue factor and thrombin in cancer progression?. J Thromb Haemost 2007; 5 (8) 1584-1587
  • 143 Bromberg ME, Konigsberg WH, Madison JF, Pawashe A, Garen A. Tissue factor promotes melanoma metastasis by a pathway independent of blood coagulation. Proc Natl Acad Sci U S A 1995; 92 (18) 8205-8209
  • 144 Albrektsen T, Sørensen BB, Hjortø GM, Fleckner J, Rao LV, Petersen LC. Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells. J Thromb Haemost 2007; 5 (8) 1588-1597
  • 145 Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 2006; 10 (5) 355-362
  • 146 Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H. Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J Biol Chem 2000; 275 (9) 6580-6585
  • 147 Sapet C, Simoncini S, Loriod B , et al. Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 2006; 108 (6) 1868-1876
  • 148 Schaffner F, Ruf W. Tissue factor and protease-activated receptor signaling in cancer. Semin Thromb Hemost 2008; 34 (2) 147-153
  • 149 Versteeg HH, Schaffner F, Kerver M , et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood 2008; 111 (1) 190-199
  • 150 van den Berg YW, van den Hengel LG, Myers HR , et al. Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci U S A 2009; 106 (46) 19497-19502
  • 151 Prydz H, Camerer E, Røttingen JA, Wiiger MT, Gjernes E. Cellular consequences of the initiation of blood coagulation. Thromb Haemost 1999; 82 (2) 183-192
  • 152 McEachron TA, Pawlinski R, Richards KL, Church FC, Mackman N. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis. Blood 2010; 116 (23) 5037-5044
  • 153 Bezuhly M, Cullen R, Esmon CT , et al. Role of activated protein C and its receptor in inhibition of tumor metastasis. Blood 2009; 113 (14) 3371-3374
  • 154 Burstyn-Cohen T, Lew ED, Través PG, Burrola PG, Hash JC, Lemke G. Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis. Neuron 2012; 76 (6) 1123-1132
  • 155 Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 2010; 11 (1) 23-36
  • 156 Gessler F, Voss V, Dützmann S, Seifert V, Gerlach R, Kögel D. Inhibition of tissue factor/protease-activated receptor-2 signaling limits proliferation, migration and invasion of malignant glioma cells. Neuroscience 2010; 165 (Suppl. 04) 1312-1322
  • 157 Palumbo JS, Degen JL. Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb Res 2007; 120 (Suppl. 02) S22-S28
  • 158 Amirkhosravi A, Meyer T, Chang JY , et al. Tissue factor pathway inhibitor reduces experimental lung metastasis of B16 melanoma. Thromb Haemost 2002; 87 (6) 930-936
  • 159 Mueller BM, Reisfeld RA, Edgington TS, Ruf W. Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci U S A 1992; 89 (24) 11832-11836
  • 160 Degen JL, Palumbo JS. Hemostatic factors, innate immunity and malignancy. Thromb Res 2012; 129 (Suppl. 01) S1-S5
  • 161 Palumbo JS, Talmage KE, Massari JV , et al. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 2007; 110 (1) 133-141
  • 162 Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20 (5) 576-590
  • 163 Kaplan RN, Riba RD, Zacharoulis S , et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438 (7069) 820-827
  • 164 Gil-Bernabé AM, Ferjancic S, Tlalka M , et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 2012; 119 (13) 3164-3175
  • 165 Kirstein JM, Graham KC, Mackenzie LT , et al. Effect of anti-fibrinolytic therapy on experimental melanoma metastasis. Clin Exp Metastasis 2009; 26 (2) 121-131
  • 166 Toomey JR, Kratzer KE, Lasky NM, Broze Jr GJ. Effect of tissue factor deficiency on mouse and tumor development. Proc Natl Acad Sci U S A 1997; 94 (13) 6922-6926
  • 167 Ngo CV, Picha K, McCabe F , et al. CNTO 859, a humanized anti-tissue factor monoclonal antibody, is a potent inhibitor of breast cancer metastasis and tumor growth in xenograft models. Int J Cancer 2007; 120 (6) 1261-1267
  • 168 Hembrough TA, Swartz GM, Papathanassiu A , et al. Tissue factor/factor VIIa inhibitors block angiogenesis and tumor growth through a nonhemostatic mechanism. Cancer Res 2003; 63 (11) 2997-3000
  • 169 Zhao J, Aguilar G, Palencia S, Newton E, Abo A. rNAPc2 inhibits colorectal cancer in mice through tissue factor. Clin Cancer Res 2009; 15 (1) 208-216
  • 170 Liu Y, Jiang P, Capkova K , et al. Tissue factor-activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy. Cancer Res 2011; 71 (20) 6492-6502
  • 171 Carneiro-Lobo TC, Konig S, Machado DE , et al. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J Thromb Haemost 2009; 7 (11) 1855-1864
  • 172 Milsom C, Anderson GM, Weitz JI, Rak J. Elevated tissue factor procoagulant activity in CD133-positive cancer cells. J Thromb Haemost 2007; 5 (12) 2550-2552
  • 173 Garnier D, Bentley V, Magnus N , et al. Brain tumor initiating cells express functional coagulation factor receptors and respond to their agonists. Paper presented at: Montreal International Symposium on Angiogenesis and Metastasis; Montreal, QC; June 12, 2013
  • 174 Palumbo JS, Talmage KE, Massari JV , et al. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 2007; 110 (1) 133-141
  • 175 Milsom C, Magnus N, Meehan B, Al-Nedawi K, Garnier D, Rak J. Tissue factor and cancer stem cells: is there a linkage?. Arterioscler Thromb Vasc Biol 2009; 29 (12) 2005-2014
  • 176 Goss PE, Chambers AF. Does tumour dormancy offer a therapeutic target?. Nat Rev Cancer 2010; 10 (12) 871-877
  • 177 Black WC, Welch HG. Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 1993; 328 (17) 1237-1243
  • 178 Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007; 7 (11) 834-846
  • 179 Naumov GN, Folkman J, Straume O, Akslen LA. Tumor-vascular interactions and tumor dormancy. APMIS 2008; 116 (7-8) 569-585
  • 180 Chittiboina P, Connor Jr DE, Caldito G, Quillin JW, Wilson JD, Nanda A. Occult tumors presenting with negative imaging: analysis of the literature. J Neurosurg 2012; 116 (6) 1195-1203
  • 181 Johnston AL, Lun X, Rahn JJ , et al. The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biol 2007; 5 (8) e212
  • 182 Karpatkin S. Does hypercoagulability awaken dormant tumor cells in the host?. J Thromb Haemost 2004; 2 (12) 2103-2106
  • 183 Walter ND, Rice PL, Redente EF , et al. Wound healing after trauma may predispose to lung cancer metastasis: review of potential mechanisms. Am J Respir Cell Mol Biol 2011; 44 (5) 591-596
  • 184 Hochberg F, Toniolo P, Cole P. Head trauma and seizures as risk factors of glioblastoma. Neurology 1984; 34 (11) 1511-1514
  • 185 Anderson JA, Weitz JI. Hypercoagulable states. Crit Care Clin 2011; 27 (4) 933-952 , vii
  • 186 Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol 2009; 27 (29) 4834-4838
  • 187 Falanga A. Thrombophilia in cancer. Semin Thromb Hemost 2005; 31 (1) 104-110
  • 188 Mackman N. Tissue-specific hemostasis in mice. Arterioscler Thromb Vasc Biol 2005; 25 (11) 2273-2281