Aktuelle Ernährungsmedizin 2014; 39(01): 51-59
DOI: 10.1055/s-0033-1360007
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Experimentelle Untersuchungen zur Verstoffwechselung von Ketonkörpern und Laktat durch Tumorzellen des Gastrointestinaltrakts

Analysis of the Metabolism of Ketone Bodies and Lactate by Gastrointestinal Tumour Cells in vitro
C. Otto*
1   Universitätsklinikum Würzburg, Chirurgische Klinik und Poliklinik, Experimentelle Chirurgie und Transplantationsimmunologie, Würzburg
,
C. Klingelhöffer*
1   Universitätsklinikum Würzburg, Chirurgische Klinik und Poliklinik, Experimentelle Chirurgie und Transplantationsimmunologie, Würzburg
,
L. Biggemann
1   Universitätsklinikum Würzburg, Chirurgische Klinik und Poliklinik, Experimentelle Chirurgie und Transplantationsimmunologie, Würzburg
,
G. Melkus
2   Julius-Maximilians-Universität Würzburg, Fakultät für Physik und Astronomie, Experimentalphysik 5, Würzburg
3   Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
,
P. Mörchel
2   Julius-Maximilians-Universität Würzburg, Fakultät für Physik und Astronomie, Experimentalphysik 5, Würzburg
,
C. Jürgens
4   University Nijmegen UMC St. Radboud, Medical Centre, 283 NCMLS Radboud Netherlands
,
S. Gahn
1   Universitätsklinikum Würzburg, Chirurgische Klinik und Poliklinik, Experimentelle Chirurgie und Transplantationsimmunologie, Würzburg
,
U. Kämmerer
5   Universitätsklinikum Würzburg, Frauenklinik und Poliklinik, Würzburg
› Author Affiliations
Further Information

Publication History

Publication Date:
07 February 2014 (online)

Zusammenfassung

Fragestellung: Die Auswirkungen einer ketogenen Diät auf das Wachstum solider Tumoren werden aktuell kontrovers diskutiert. Aus diesem Grund wurde in vitro untersucht, bei welchen Sauerstoffkonzentrationen Tumorzellen Ketonkörper (β-Hydroxybutyrat) und die beiden Metabolite Glukose und Laktat, die auch bei einer ketogenen Diät vorkommen, verstoffwechseln. Zudem wurde exemplarisch das Tumorwachstum unter einer standardisierten ketogenen Diät im Tiermodell überprüft.

Material und Methodik: Konfluente Kulturen von 6 humanen gastrointestinalen Tumorzelllinien wurden in vitro bei 21 % und 1 % Sauerstoff untersucht. Glukose, Laktat und β-Hydroxybutyrat wurden mit Standardenzymassays bestimmt. Mit einer standardisierten ketogenen Diät wurde in Kleinnagern eine physiologische Ketose ausgelöst und durch subkutane Injektion von Tumorzellen das Wachstum solider Tumoren induziert.

Ergebnisse: Kulturen der 6 Tumorzelllinien verstoffwechseln Ketonkörper und Laktat bei 21 %, nicht aber bei 1 % Sauerstoff; dagegen wird Glukose bei beiden Sauerstoffkonzentrationen metabolisiert. Stehen Tumorzellen bei 21 % Sauerstoff die beiden Energieträger Glukose und Laktat gleichzeitig zur Verfügung, wird zuerst Glukose und anschließend Laktat verstoffwechselt. Unter einer ketogenen Diät entwickeln Mäuse eine physiologische Ketose mit signifikant erhöhten Ketonkörperspiegeln. Die Tumoren dieser Mäuse weisen verringerte intratumorale Laktatspiegel und ein verzögertes Wachstum auf.

Schlussfolgerung: Die In-vitro-Daten dieser experimentellen Arbeit unterstützen das Konzept, dass in vivo der Stoffwechsel solider Tumoren durch die lokale Sauerstoffversorgung wesentlich beeinflusst wird. Sauerstoffkonzentrationen von 1 %, die regelhaft in soliden Tumoren vorzufinden sind (Tumorhypoxie), reichen in vitro nicht aus, damit gastrointestinale Tumorzellen Ketonkörper und Laktat verstoffwechseln; im Gegensatz zur Glukose. Um Tumorzellen in Hypoxie zum Absterben zu bringen, sollte bei ihnen daher der Glukosestoffwechsel selektiv gehemmt und zusätzlich das Glukoseangebot durch diätetische Maßnahmen eingeschränkt werden.

Abstract

Purpose: The effect of a ketogenic diet on tumour growth is currently controversial. For this study we analysed tumour cells in vitro to determine what level of oxygen is required for the oxidative degradation of ketone bodies (β-hydroxybutyrate) and the metabolites glucose and lactate that are also present in a ketogenic diet. In addition, tumour growth was examined under a standard ketogenic diet in an animal model.

Material and Methods: Six different gastrointestinal tumour cell lines grown to confluence were investigated in vitro for their metabolic properties at 21 % and 1 % oxygen. Concentrations of glucose, lactate, and β-hydroxybutyrate were quantified using standard enzymatic assays. A ketosis was induced in nude mice via a standardised ketogenic diet and tumour growth was induced by subcutaneously injected tumour cells.

Results: Cell cultures of the 6 tumour cell lines were able to metabolize ketone bodies as well as lactate at 21 % oxygen, but not at 1 %. Glucose, in contrast, was metabolized at both oxygen concentrations by all 6 tumour cell lines. The data indicate that tumour cells with access to both glucose and lactate at 21 % oxygen, consume glucose first and only when glucose is exhausted, do they start to metabolise lactate. Mice fed a ketogenic diet represent a clear physiological ketosis with elevated blood ketone levels. Tumours in the ketogenic diet group grew slower and had lower intratumoral lactate levels in comparison to tumours in the standard diet group.

Conclusion: The in vitro data presented support the concept that metabolism in solid tumours is significantly influenced by the local oxygenation. Oxygen concentrations of 1 %, usually found in solid tumours (tumour hypoxia), are insufficient for the in vitro metabolization of ketone bodies and lactate in tumour cell lines, in contrast to glucose that is metabolized under these conditions. Therefore, a therapeutic approach that targets the tumour cell energy metabolism under hypoxic conditions must inhibit glucose metabolism pharmacologically with decreased glucose supply, e. g. via dietary interventions.

* gleichberechtigte Autoren


 
  • Literatur

  • 1 Tennant DA, Durán RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 2010; 10: 267-277
  • 2 Hübner J, Marienfeld S, Abbenhardt C et al. Wie sinnvoll sind „Krebsdiäten“? Eine kritische Analyse als Grundlage für die ärztliche Beratung. Deutsche Med Wochenschrift 2012; 137: 2417-2422
  • 3 Hübner J, Löser C, Stoll C. Vorstellungen zur Therapie von Malignomen mit Krebsdiäten. Onkologe 2013; 19: 108-116
  • 4 Bonuccelli G, Tsirigos A, Whitaker-Menezes D et al. Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 2010; 9: 3506-3514
  • 5 Magee BA, Potezny N, Rofe AM et al. The inhibition of malignant cell growth by ketone bodies. Aust J Exp Biol Med Sci 1979; 57: 529-539
  • 6 Tisdale MJ, Brennan RA. Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. Br J Cancer 1983; 47: 293-297
  • 7 Sawai M, Yashiro M, Nishiguchi Y et al. Growth-inhibitory effects of the ketone body, monoacetoacetin, on human gastric cancer cells with succinyl-CoA: 3-oxoacid CoA-transferase (SCOT) deficiency. Anticancer Res 2004; 24: 2213-2217
  • 8 Skinner R, Trujillo A, Ma X et al. Ketone bodies inhibit the viability of human neuroblastoma cells. J Pediatr Surg 2009; 44: 212-216
  • 9 Fine EJ, Miller A, Quadros EV et al. Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell Int 2009; 9: 14
  • 10 Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 2007; 26: 225-239
  • 11 Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer 2008; 8: 967-975
  • 12 Solaini G, Baracca A, Lenaz G et al. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 2010; 1797: 1171-1177
  • 13 Kallinowski F, Schlenger KH, Runkel S et al. Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res 1989; 49: 3759-3764
  • 14 Cahill Jr GF. Starvation in man. N Engl J Med 1970; 282: 668-675
  • 15 Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004; 70: 309-319
  • 16 McGarry JD, Forster DW. Regulation of hepatic fatty acid oxidation and ketone body production. Ann Rev Biochem 1980; 49: 395-420
  • 17 Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 1999; 15: 412-426
  • 18 VanItallie TB, Nufert TH. Ketones: metabolism's ugly duckling. Nutr Rev 2003; 61: 327-341
  • 19 Longo N, Fukao T, Singh R et al. Succinyl-CoA:3-ketoacid transferase (SCOT) deficiency in a new patient homozygous for an R217X mutation. J Inherit Metab Dis 2004; 27: 691-692
  • 20 Racker E. History of the Pasteur effect and its pathobiology. Mol Cell Biochem 1974; 5: 17-23
  • 21 Warburg O, Minami S. Versuche an überlebendem Karzinomgewebe. Klinische Wochenschrift 1923; 17: 776-777
  • 22 Sonveaux P, Végran F, Schroeder T et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 2008; 118: 3930-3942
  • 23 Vollmers HP, Stulle K, Dämmrich J et al. Characterization of four new gastric cancer cell lines. Virchows Arch B Cell Pathol Incl Mol Pathol 1993; 63: 335-343
  • 24 Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45
  • 25 Jurowich CF, Rikkala PR, Thalheimer A et al. Duodenal-Jejunal Bypass Improves Glycemia and Decreases SGLT1-Mediated Glucose Absorption in Rats with Streptozotocin-Induced Type 2 Diabetes. Ann Surg 2013; 258: 89-97
  • 26 Otto C, Heeg A, Kottenmeier S et al. Immunisation with an allogeneic peptide promotes the induction of antigen-specific MHC IIpos, CD4+ rat T cells with immunostimulatory properties. Transpl Immunol 2012; 26: 220-229
  • 27 Otto C, Kämmerer U, Illert B et al. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 2008; 8: 122
  • 28 Gruetter R. Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 1993; 29: 804-811
  • 29 He Q, Shungu DC, van Zijl PC et al. Single scan in vivo lactate editing with complete lipid and water suppression by selective multiple-quantumcoherence transfer (Sel-MQC) with application to tumors. J Magn Reson B 1995; 106: 203-211
  • 30 Melkus G, Mörchel P, Behr VC et al. Sensitive J-coupled metabolite mapping using Sel-MQC with selective multi spin echo readout. Mag Reson Med 2009; 62: 880-887
  • 31 Mörchel P, Melkus G, Yaromina A et al. Correlating quantitative MR measurements of standardized tumor lines with histological parameters and tumor control dose. Radiother Oncol 2010; 96: 123-130
  • 32 Gatenby RA, Gillies RJ. “Why do cancers have high aerobic glycolysis?”. Nat Rev Cancer 2004; 4: 891-899
  • 33 Gatenby RA, Smallbone K, Maini PK et al. Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 2007; 97: 646-653
  • 34 Wallace DC. Mitochondria and cancer. Nat Rev Cancer 2012; 12: 685-698
  • 35 Newsholme EA. Carbohydrate metabolism in vivo: regulation of the blood glucose level. Clin Endocrinol Metab 1976; 5: 543-578
  • 36 Walenta S, Mueller-Klieser WF. Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 2004; 14: 267-274
  • 37 Walenta S, Wetterling M, Lehrke M et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 2000; 60: 916-921
  • 38 Fischer K, Hoffmann P, Voelkl S et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007; 109: 3812-3819
  • 39 Shime H, Yabu M, Akazawa T et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol 2008; 180: 7175-7183
  • 40 Wilder R. High fat diets in epilepsy. Mayo Clin Bull 1921; 2: 307-308
  • 41 Freeman JM, Kossoff EH, Hartman AL. The ketogenic diet: one decade later. Pediatrics 2007; 119: 535-543
  • 42 McNally MA, Hartman AL. Ketone bodies in epilepsy. J Neurochem 2012; 121: 28-35
  • 43 Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 2012; 3: 59
  • 44 Williamson JR, Krebs HA. Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J 1961; 80: 540-547
  • 45 Hanson RW. Interrelationship of ketone body metabolism and glucose utilisation by adipose tissue in vitro. Arch Biochem Biophys 1965; 109: 98-103
  • 46 Schmidt M, Pfetzer N, Schwab M et al. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial. Nutr Metab (Lond) 2011; 8: 54
  • 47 Fine EJ, Segal-Isaacson CJ, Feinman RD et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 2012; 28: 1028-1035
  • 48 Klement RJ, Frobel T, Albers T et al. A pilot case study on the impact of a self-prescribed ketogenic diet on biochemical parameters and running performance in healthy and physically active individuals. Nutrition and Medicine 2012; 1: 10
  • 49 Collier G, O'Dea K. The effect of coingestion of fat on the glucose, insulin, and gastric inhibitory polypeptide responses to carbohydrate and protein. Am J Clin Nutr 1983; 37: 941-944
  • 50 Kaaks R, Lukanova A. Energy balance and cancer: the role of insulin and insulin-like growth factor-I. Proc Nutr Soc 2001; 60: 91-106
  • 51 Holm E, Hagmüller E, Staedt U et al. Substrate balances across colonic carcinomas in humans. Cancer Res 1995; 55: 1373-1378
  • 52 Holm E, Kämmerer U. Fette und Kohlenhydrate in Ernährungskonzepten für Tumorpatienten. Aktuel Ernahrungsmed 2011; 36: 286-298
  • 53 Klement RJ, Kämmerer U. Is there a role for carbohydrate restriction in the treatment and prevention of cancer?. Nutr Metab (Lond) 2011; 8: 75