Planta Med 2014; 80(01): 56-62
DOI: 10.1055/s-0033-1360174
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Photodynamic Effect of Hypericin after Topical Application in the Ex Ovo Quail Chorioallantoic Membrane Model

Ivan Čavarga
1   Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovakia
2   St Elizabeth Oncological Institute, Bratislava, Slovakia
,
Boris Bilčík
1   Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovakia
,
Pavel Výboh
1   Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovakia
,
Monika Záškvarová
1   Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovakia
,
Dušan Chorvát
3   International Laser Centre, Bratislava, Slovakia
,
Peter Kasák
4   Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
,
Peter Mlkvý
2   St Elizabeth Oncological Institute, Bratislava, Slovakia
,
Anton Mateašík
3   International Laser Centre, Bratislava, Slovakia
,
Alžbeta Chorvátová
3   International Laser Centre, Bratislava, Slovakia
,
Pavol Miškovský
5   Dept. of Biophysics, Faculty of Sciences, P. J. Šafárik University, Košice, Slovakia
6   Center for Interdisciplinary Biosciences, P. J. Šafárik University, Košice, Slovakia
› Author Affiliations
Further Information

Publication History

received 07 August 2013
revised 18 October 2013

accepted 19 November 2013

Publication Date:
10 January 2014 (online)

Abstract

Photosensitizing properties of hypericin are well known, and the chicken chorioallantoic membrane has previously been used to test photodynamic effects of hypericin and other substances. In our study the photodynamic effect of hypericin in the ex ovo quail chorioallantoic membrane model was evaluated. Steady-state and time-resolved fluorescence spectroscopy of hypericin solution in PEG-400 and its mixture in PBS was performed to assess and characterize the process of aggregation and disaggregation of hypericin during the drug formulation preparation. A therapeutical formulation (2 µg/g of embryo weight) was topically applied on CAM into the silicone ring. Hypericin was excited by diode laser with wavelength 405 nm, fluence rate 140 mW/cm2, and fluence 16.8 J/cm2. Hypericin in 100 % PEG-400 exhibits typical fluorescence spectra with a maximum of about 600 nm, while hypericin 10% PEG-400 formulation exhibits almost no fluorescence. Time resolved spectra analysis showed fluorescence decay of hypericin in 100 % PEG-400 solution with a mean lifetime of 5.1 ns and in 10 % PEG 4.1 ns. Damage of quail chorioallantoic membrane vasculature after photodynamic therapy ranged from hemorrhage and vanishing of capillary vessels to thrombosis, lysis, and hemorrhage of larger vessels.

The presented findings suggest that quail embryos can be used as a suitable model to test the effect of hypericin and other photodynamic compounds.

 
  • References

  • 1 Miskovsky P. Hypericin-a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological molecules. Curr Drug Targets 2002; 3: 55-84
  • 2 Van de Putte M, Roskams T, Bormans G, Verbruggen A, de Witte PA. The impact of aggregation on the biodistribution of hypericin. Int J Oncol 2006; 28: 655-660
  • 3 Kascakova S, Nadova Z, Mateasik A, Mikes J, Huntosova V, Refregiers M, Sureau F, Maurizot JC, Miskovsky P, Jancura D. High level of low-density lipoprotein receptors enhance hypericin uptake by U-87MG cells in the presence of LDL. Photochem Photobiol 2008; 84: 120-127
  • 4 Bano G, Stanicova J, Jancura D, Marek J, Bano M, Ulicny J, Strejckova A, Miskovsky P. On the diffusion of hypericin in dimethylsulfoxide/water mixtures-the effect of aggregation. J Phys Chem B 2011; 115: 2417-2423
  • 5 Zeisser-Labouebe M, Delie F, Gurny R, Lange N. Screening of nanoparticulate delivery systems for the photodetection of cancer in a simple and cost-effective model. Nanomedicine 2009; 4: 135-143
  • 6 Huygens A, Kamuhabwa AR, de Witte PA. Stability of different formulations and ion pairs of hypericin. Eur J Pharm Biopharm 2005; 59: 461-468
  • 7 Thong PS, Olivo M, Chin WW, Bhuvaneswari R, Mancer K, Soo KC. Clinical application of fluorescence endoscopic imaging using hypericin for the diagnosis of human oral cavity lesions. Br J Cancer 2009; 101: 1580-1584
  • 8 Buzova D, Huntosova V, Kasak P, Petrovajova D, Joniova J, Dzurova L, Nadova Z, Sureau F, Miskovsky P, Jancura D. Towards increased selectivity of drug delivery to cancer cells: development of a LDL-based nanodelivery system for hydrophobic photosensitizers. SPIE Proc 2012; 8460: 84600U-4
  • 9 Agostinis P, Vantieghem A, Merlevede W, de Witte PA. Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 2002; 34: 221-241
  • 10 Martinez-Poveda B, Quesada AR, Medina MA. Hypericin in the dark inhibits key steps of angiogenesis in vitro . Eur J Pharmacol 2005; 516: 97-103
  • 11 Miadokova E, Chalupa I, Vlckova V, Sevcovicova A, Nadova S, Kopaskova M, Hercegova A, Gasperova P, Alfoldiova L, Komjatiova M, Csanyiova Z, Galova E, Cellarova E, Vlcek D. Genotoxicity and antigenotoxicity evaluation of non-photoactivated hypericin. Phytother Res 2010; 24: 90-95
  • 12 Weiss A, den Bergh HV, Griffioen AW, Nowak-Sliwinska P. Angiogenesis inhibition for the improvement of photodynamic therapy: the revival of a promising idea. Biochim Biophys Acta 2012; 1826: 53-70
  • 13 Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease?. Photochem Photobiol Sci 2004; 3: 436-450
  • 14 Olivo M, Fu CY, Raghavan V, Lau WK. New frontier in hypericin-mediated diagnosis of cancer with current optical technologies. Ann Biomed Eng 2012; 40: 460-473
  • 15 Chen B, Roskams T, de Witte PA. Antivascular tumor eradication by hypericin-mediated photodynamic therapy. Photochem Photobiol 2002; 76: 509-513
  • 16 Cavarga I, Brezani P, Fedorocko P, Miskovsky P, Bobrov N, Longauer F, Rybarova S, Mirossay L, Stubna J. Photoinduced antitumour effect of hypericin can be enhanced by fractionated dosing. Phytomedicine 2005; 12: 680-683
  • 17 Mondon K, Zeisser-Labouebe M, Gurny R, Moller M. MPEG-hexPLA micelles as novel carriers for hypericin, a fluorescent marker for use in cancer diagnostics. Photochem Photobiol 2011; 87: 399-407
  • 18 Vargas A, Zeisser-Labouebe M, Lange N, Gurny R, Delie F. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv Drug Deliv Rew 2007; 30: 1162-1176
  • 19 Richardson M, Singh G. Observations on the use of the avian chorioallantoic membrane (CAM) model in investigations into angiogenesis. Curr Drug Targets Cardiovasc Haematol Disord 2003; 3: 155-185
  • 20 Hammer-Wilson MJ, Akian L, Espinoza J, Kimel S, Berns MW. Photodynamic parameters in the chick chorioallantoic membrane (CAM) bioassay for topically applied photosensitizers. J Photochem Photobiol B 1999; 53: 44-52
  • 21 Ruck A, Bohmler A, Steiner R. PDT with Tookad studied in the chorioallantoic membrane of fertilized eggs. Photodiagnosis Photodyn Ther 2005; 2: 79-90
  • 22 Vyboh P, Zeman M, Bilcik B, Sarnikova B, Kostal L. Angiogenic effect of leptin in the quail chorioallantoic membrane. Acta Vet Brno 2010; 79: 13-17
  • 23 Kuete V, Ngameni B, Wiench B, Krusche B, Horwedel C, Ngandjui BT, Efferth T. Cytotoxicity and mode of action of four naturally occuring flavonoids from the genus Dorstenia: gancaonin Q, 4-hydroxylonchocarpin, 6-prenylapigenin, and 6,8-diprenyleriodictyol. Planta Med 2011; 77: 1984-1989
  • 24 Kuete V, Krusche B, Youns M, Voukeng I, Fankam AG, Tankeo S, Lacmata S, Efferth T. Cytotoxicity of some Cameroonian spices selected medicinal plant extracts. J Etnopharmacol 2011; 134: 803-812
  • 25 Cárdenas C, Quesada AR, Medina MA. Anti-angiogenic and anti-inflammatory properties of kahweol, a coffee diterpene. PLoS One 2011; 6: e23407
  • 26 Parsons-Wingerter P, Lwai B, Yang MC, Elliot KE, Milaninia A, Redlitz A, Clark JI, Sage H. A novel assay of angiogenesis in the quail chorioallantoic membrane: stimulation by bFGF and inhibition by angiostatin according to fractal dimension and grid intersection. Microvasc Res 1998; 55: 201-214
  • 27 Huss D, Poynter G, Lansford R. Japanese quail (Coturnix japonica) as laboratory animal model. Lab Animal 2008; 37: 513-519
  • 28 González-Iriarte M, Carmona R, Pérez-Pomares JM, Macías D, Medina MA, Quesada AR, Munoz-Chápuli RA. A modified chorioallantoic membrane assay allows for specific detection of endothelial apoptosis induced by antiangiogenic substances. Angiogenesis 2003; 6: 251-254
  • 29 Saw CL, Heng PW, Chin WW, Soo KC, Olivo M. Enhanced photodynamic activity of hypericin by penetration enhancer N-methyl pyrrolidone formulation in the chick chorioallantoic membrane model. Cancer Lett 2006; 238: 104-110
  • 30 Gilleron L, Coecke S, Sysmans M, Hansen E, van Oproy S, Marzin D, van Cauteren H, Vanparys P. Evaluation of the HET-CAM-TSA method as an alternative to the draize irritation test. Toxicol In Vitro 1997; 11: 641-644
  • 31 Liu J, Saw CL, Olivo M, Sudhaharan T, Ahmed S, Heng PW, Wohland T. Study of interaction of hypericin and its pharmaceutical preparation by fluorescence techniques. J Biomed Opt 2009; 14: 014003
  • 32 Ueda Y, Tsuboi M, Ota Y, Makita M, Aoshima T, Nakajima M, Narama I. Gastric mucosal changes induced by polyethylene glycol 400 administered by gavage in rats. J Toxicol Sci 2011; 36: 811-815
  • 33 Chlumska A, Krekulova L, Mukensnabl P, Zamecnik M. Mucosal changes after a polyethylene glycol bowel preparation for colonoscopy are less than those after sodium phosphate. Cesk Patol 2011; 47: 130-131
  • 34 Fruijtier-Polloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives a used in cosmetic products. Toxicology 2005; 214: 1-38
  • 35 Zhong H, Guo Z, Wei H, Guo L, Wang C, He Y, Xiong H, Liu S. Synergistic effect of ultrasound and thiazone-PEG 400 on human skin optical clearing in vivo . Photochem Photobiol 2010; 86: 732-737
  • 36 Gbur P, Dedic R, Chorvat jr. D, Miskovsky P, Hala J, Jancura D. Time- resolved luminiscence and singlet oxygen formation after illumination of the hypericin-low-density lipoprotein complex. Photochem Photobiol 2009; 85: 816-823
  • 37 Schneckenburger H, Konig K, Kunzi-Rapp K, Westphal-Frosch C, Ruck A. Time-resolved in-vivo fluorescence of photosensitizing porphyrins. J Photochem Photobiol B 1993; 21: 143-147
  • 38 Theodossiou T, Spiro MD, Jacobson J, Hothersall JS, Macrobert AJ. Evidence for intracellular aggregation of hypericin and the impact on its photocytotoxicity in PAM 212 murine keratinocytes. Photochem Photobiol 2004; 80: 438-443
  • 39 Mikes J, Hyzdalova M, Koci L, Jendzelovsky R, Koval J, Vaculova A, Hoffmanova J, Kozubik A, Fedorocko P. Lower sensitivity of FHC fetal colon epithelial cells to photodynamic therapy compared to HT-29 colon adenocarcinoma cells despite higher intracellular accumulation of hypericin. Photochem Photobiol Sci 2011; 10: 626-632
  • 40 Saw CL, Olivo M, Chin WW, Soo KC, Heng PW. Superiority of N-methyl pyrrolidone over albumin with hypericin for fluorescence diagnosis of human bladder cancer cells implanted in the chick chorioallantoic membrane model. J Photochem Photobiol B 2007; 86: 207-218
  • 41 Chorvat jr. D, Chorvatova A. Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. Eur Biophys J 2006; 36: 73-83
  • 42 Parsons-Wingerter P, Elliott KE, Farr AG, Radhakrishnan K, Clark JI, Sage EH. Generational analysis reveals that TGF-β1 inhibits the rate of angiogenesis in vivo selective decrease in the number of new vessels. Microvasc Res 2000; 59: 221-232