Klin Monbl Augenheilkd 2014; 231(5): 527-534
DOI: 10.1055/s-0033-1360360
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Therapie des diabetischen Makulaödems mit den VEGF-Inhibitoren Ranibizumab und Bevacizumab: Schlüsse aus grundlegenden In-vitro-Untersuchungen

Treatment of Diabetic Macular Oedema with the VEGF Inhibitors Ranibizumab and Bevacizumab: Conclusions from Basic in vitro Studies
G. E. Lang
1   Augenklinik, Universitätsklinikum Ulm
,
G. K. Lang
1   Augenklinik, Universitätsklinikum Ulm
,
H. L. Deissler
2   Augenklinik – Forschungslabor, Universitätsklinikum Ulm
› Author Affiliations
Further Information

Publication History

eingereicht 30 December 2013

akzeptiert 10 January 2014

Publication Date:
05 May 2014 (online)

Zusammenfassung

Die diabetische Retinopathie (DR) mit Ausbildung eines diabetischen Makulaödems (DME) ist eine häufige und ernste, den Visus bedrohende Erkrankung. Da bei vielen Patienten eine Laserbehandlung des DME nicht zu einer Visusverbesserung führt, ist die Verbesserung der Prognose der DME-Patienten durch eine medikamentöse Therapie ein wichtiges Ziel der ophthalmologischen Forschung. Hemmung des Wachstumsfaktors „vascular endothelial growth factor“ (VEGF) zur Therapie des DME erscheint mechanistisch plausibel, da der bei DR verstärkt im Auge vorkommende VEGF die Permeabilität von Endothelzellschranken wesentlich beeinflusst. Diese Wirkung des VEGF ist im Vergleich zur angiogenen Wirkung durch Stimulation von Proliferation und Migration der retinalen Endothelzellen bisher allerdings weniger gut untersucht. Von In-vitro-Untersuchungen an primären und immortalisierten retinalen Endothelzellen kann abgeleitet werden, dass VEGF tatsächlich eine Schlüsselrolle bei der Regulation der retinalen Endothelzellschranke spielt. Selbst in Gegenwart einer Reihe anderer bei DR verstärkt vorkommender Wachstumsfaktoren, kann durch die in klinisch erreichbaren Konzentrationen eingesetzten VEGF-Inhibitoren Ranibizumab (Lucentis®) und Bevacizumab (Avastin®) eine schnelle Normalisierung erreicht werden. Im Gegensatz zu dem Antikörperfragment Ranibizumab akkumuliert der komplette Antikörper Bevacizumab bei längerer Exposition sowohl in retinalen Endothelzellen als auch in Pigmentepithelzellen. Diese Beobachtung erscheint interessant im Hinblick auf eine Behandlung von Patienten mit VEGF-Hemmern über viele Jahre, bei der bisher noch unerkannte Nebenwirkungen einer Langzeittherapie auftreten könnten.

Abstract

Diabetic macular oedema (DMO) which may occur at all stages of diabetic retinopathy (DR) is a severe vision-threatening complication. In most cases, laser treatment does not improve visual acuity. Therefore research in ophthalmology focuses on the improvement of the prognosis of DMO patients with a drug-based DMO therapy. Vascular endothelial growth factor (VEGF) is considered the most important therapeutic target because this growth factor also is the most potent permeability factor affecting the inner retinal barrier formed by endothelial cells (ECs). Compared to its angiogenic stimulation of proliferation and migration of ECs, effects of VEGF on permeability have not been studied in all details. In vitro investigations on the behaviour of primary or immortalised retinal endothelial cells confirmed the key role of VEGF in the regulation of the permeability of the inner retinal barrier. Despite the presence of a variety of other factors found to be elevated in DR, a VEGF-disrupted barrier can be completely restored with the VEGF-inhibiting ranibizumab (Lucentis®) and bevacizumab (Avastin®) when applied at clinically achievable concentrations. The antibody bevacizumab, but not the antibody fragment ranibizumab, accumulates in both retinal EC and pigment epithelial cells during prolonged treatment. This observation might be relevant because patients are often treated for several years and additional long-term side effects may be recognised in the future.

 
  • Literatur

  • 1 King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21: 1414-1431
  • 2 Danaei G, Finucane MM, Lu Y et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011; 378: 31-40
  • 3 Lang GE. Diabetic macular edema. Ophthalmologica 2012; 227 (Suppl. 01) 21-29
  • 4 Rathmann W, Strassburger K, Heier M et al. Incidence of Type 2 diabetes in the elderly German population and the effect of clinical and lifestyle risk factors: KORA S4/F4 cohort study. Diabet Med 2009; 26: 1212-1219
  • 5 Wong TY, Mwamburi M, Klein R et al. Rates of progression in diabetic retinopathy during different time periods: a systematic review and meta-analysis. Diabetes Care 2009; 32: 2307-2313
  • 6 Henricsson M, Sellman A, Tyrberg M et al. Progression to proliferative retinopathy and macular oedema requiring treatment. Assessment of the alternative classification of the Wisconsin Study. Acta Ophthalmol Scand 1999; 77: 218-223
  • 7 Williams R, Airey M, Baxter H et al. Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye (Lond) 2004; 18: 963-983
  • 8 Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol 1985; 103: 1796-1806
  • 9 Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 2. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1987; 94: 761-774
  • 10 Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004; 25: 581-611
  • 11 Pan Q, Chathery Y, Wu Y et al. Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem 2007; 282: 24049-24056
  • 12 Migdal M, Huppertz B, Tessler S et al. Neuropilin-1 is a placenta growth factor-2 receptor. J Biol Chem 1998; 273: 22272-22278
  • 13 Park JE, Chen HH, Winer J et al. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 1994; 269: 25646-25654
  • 14 Blaauwgeers HG, Holtkamp GM, Rutten H et al. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 1999; 155: 421-428
  • 15 Watkins WM, McCollum GW, Savage SR et al. Hypoxia-induced expression of VEGF splice variants and protein in four retinal cell types. Exp Eye Res 2013; 116: 240-246
  • 16 Aiello LP, Northrup JM, Keyt BA et al. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 1995; 113: 1538-1544
  • 17 Shima DT, Adamis AP, Ferrara N et al. Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol Med 1995; 1: 182-193
  • 18 Lu M, Kuroki M, Amano S et al. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 1998; 101: 1219-1224
  • 19 Eichler W, Kuhrt H, Hoffmann S et al. VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport 2000; 11: 3533-3537
  • 20 Pepper MS, Ferrara N, Orci L et al. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 1991; 181: 902-906
  • 21 Lamoreaux WJ, Fitzgerald ME, Reiner A et al. Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc Res 1998; 55: 29-42
  • 22 Alon T, Hemo I, Itin A et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1995; 1: 1024-1028
  • 23 Aiello LP, Avery RL, Arrigg PG et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 1480-1487
  • 24 Malecaze F, Clamens S, Simorre-Pinatel V et al. Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch Ophthalmol 1994; 112: 1476-1482
  • 25 Boulton M, Foreman D, Williams G et al. VEGF localisation in diabetic retinopathy. Br J Ophthalmol 1998; 82: 561-568
  • 26 Khaliq A, Foreman D, Ahmed A et al. Increased expression of placenta growth factor in proliferative diabetic retinopathy. Lab Invest 1998; 78: 109-116
  • 27 Meyer-Schwickerath R, Pfeiffer A, Blum WF et al. Vitreous levels of the insulin-like growth factors I and II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease. Studies in nondiabetic and diabetic subjects. J Clin Invest 1993; 92: 2620-2625
  • 28 Boulton M, Gregor Z, McLeod D et al. Intravitreal growth factors in proliferative diabetic retinopathy: correlation with neovascular activity and glycaemic management. Br J Ophthalmol 1997; 81: 228-233
  • 29 Tolentino MJ, Miller JW, Gragoudas ES et al. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch Ophthalmol 1996; 114: 964-970
  • 30 Adamis AP, Shima DT, Tolentino MJ et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 1996; 114: 66-71
  • 31 Presta LG, Chen H, OʼConnor SJ et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997; 57: 4593-4599
  • 32 Ferrara N, Damico L, Shams N et al. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006; 26: 859-870
  • 33 Lang GE, Berta A, Eldem BM et al. Two-year safety and efficacy of ranibizumab 0.5 mg in diabetic macular edema: interim analysis of the RESTORE extension study. Ophthalmology 2013; 120: 2004-2012
  • 34 Ford JA, Lois N, Royle P et al. Current treatments in diabetic macular oedema: systematic review and meta-analysis. BMJ Open 2013; 3
  • 35 Sander B, Larsen M, Moldow B et al. Diabetic macular edema: passive and active transport of fluorescein through the blood-retina barrier. Invest Ophthalmol Vis Sci 2001; 42: 433-438
  • 36 Qaum T, Xu Q, Joussen AM et al. VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci 2001; 42: 2408-2413
  • 37 Amadio M, Scapagnini G, Lupo G et al. PKCbetaII/HuR/VEGF: A new molecular cascade in retinal pericytes for the regulation of VEGF gene expression. Pharmacol Res 2008; 57: 60-66
  • 38 Sun Y, Wang D, Ye F et al. Elevated cell proliferation and VEGF production by high-glucose conditions in Muller cells involve XIAP. Eye (Lond) 2013; 27: 1299-1307
  • 39 Antonetti DA, Barber AJ, Hollinger LA et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 1999; 274: 23463-23467
  • 40 Harhaj NS, Felinski EA, Wolpert EB et al. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci 2006; 47: 5106-5115
  • 41 Deissler H, Deissler H, Lang GK et al. Generation and characterization of iBREC: novel hTERT-immortalized bovine retinal endothelial cells. Int J Mol Med 2005; 16: 65-70
  • 42 Deissler HL, Deissler H, Lang GE. Inhibition of protein kinase C is not sufficient to prevent or reverse effects of VEGF165 on claudin-1 and permeability in microvascular retinal endothelial cells. Invest Ophthalmol Vis Sci 2010; 51: 535-542
  • 43 Deissler HL, Deissler H, Lang GE. Inhibition of vascular endothelial growth factor (VEGF) is sufficient to completely restore barrier malfunction induced by growth factors in microvascular retinal endothelial cells. Br J Ophthalmol 2011; 95: 1151-1156
  • 44 Deissler HL, Deissler H, Lang GK et al. VEGF but not PlGF disturbs the barrier of retinal endothelial cells. Exp Eye Res 2013; 115: 162-171
  • 45 Othman A, Ahmad S, Megyerdi S et al. 12/15-Lipoxygenase-derived lipid metabolites induce retinal endothelial cell barrier dysfunction: contribution of NADPH oxidase. PLoS One 2013; 8: e57254
  • 46 PKC-DRS Study Group. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy: initial results of the Protein Kinase C beta Inhibitor Diabetic Retinopathy Study (PKC-DRS) multicenter randomized clinical trial. Diabetes 2005; 54: 2188-2197
  • 47 Bazzoni G. Endothelial tight junctions: permeable barriers of the vessel wall. Thromb Haemost 2006; 95: 36-42
  • 48 Cai J, Wu L, Qi X et al. Placenta growth factor-1 exerts time-dependent stabilization of adherens junctions following VEGF-induced vascular permeability. PLoS One 2011; 6: e18076
  • 49 Deissler H, Deissler H, Lang S et al. VEGF-induced effects on proliferation, migration and tight junctions are restored by ranibizumab (Lucentis) in microvascular retinal endothelial cells. Br J Ophthalmol 2008; 92: 839-843
  • 50 Haurigot V, Villacampa P, Ribera A et al. Increased intraocular insulin-like growth factor-I triggers blood-retinal barrier breakdown. J Biol Chem 2009; 284: 22961-22969
  • 51 Wisniewska-Kruk J, Hoeben KA, Vogels IM et al. A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes. Exp Eye Res 2012; 96: 181-190
  • 52 Castellon R, Hamdi HK, Sacerio I et al. Effects of angiogenic growth factor combinations on retinal endothelial cells. Exp Eye Res 2002; 74: 523-535
  • 53 Deissler HL, Deissler H, Lang GK et al. Ranibizumab efficiently blocks migration but not proliferation induced by growth factor combinations including VEGF in retinal endothelial cells. Graefes Arch Clin Exp Ophthalmol 2013; 251: 2345-2353
  • 54 Stewart EA, Samaranayake GJ, Browning AC et al. Comparison of choroidal and retinal endothelial cells: characteristics and response to VEGF isoforms and anti-VEGF treatments. Exp Eye Res 2011; 93: 761-766
  • 55 Yu L, Liang XH, Ferrara N. Comparing protein VEGF inhibitors: In vitro biological studies. Biochem Biophys Res Commun 2011; 408: 276-281
  • 56 Deissler HL, Deissler H, Lang GE. Actions of bevacizumab and ranibizumab on microvascular retinal endothelial cells: similarities and differences. Br J Ophthalmol 2012; 96: 1023-1028
  • 57 Klettner A, Roider J. Comparison of bevacizumab, ranibizumab, and pegaptanib in vitro: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci 2008; 49: 4523-4527
  • 58 Klettner AK, Kruse ML, Meyer T et al. Different properties of VEGF-antagonists: Bevacizumab but not Ranibizumab accumulates in RPE cells. Graefes Arch Clin Exp Ophthalmol 2009; 247: 1601-1608
  • 59 Klettner A, Mohle F, Roider J. Intracellular bevacizumab reduces phagocytotic uptake in RPE cells. Graefes Arch Clin Exp Ophthalmol 2010; 248: 819-824
  • 60 Miura Y, Klettner A, Roider J. VEGF antagonists decrease barrier function of retinal pigment epithelium in vitro: possible participation of intracellular glutathione. Invest Ophthalmol Vis Sci 2010; 51: 4848-4855
  • 61 Heiduschka P, Fietz H, Hofmeister S et al. Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Invest Ophthalmol Vis Sci 2007; 48: 2814-2823
  • 62 Schraermeyer U, Julien S. Formation of immune complexes and thrombotic microangiopathy after intravitreal injection of bevacizumab in the primate eye. Graefes Arch Clin Exp Ophthalmol 2012; 250: 1303-1313