Neuroradiologie Scan 2014; 04(03): 233-245
DOI: 10.1055/s-0034-1365274
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Anwendung von Grundprinzipien der Physik bei der Magnetresonanzangiografie von Kopf und Hals: Erkennung von Artefakten[1]

Application of basic principles of physics to head and neck MR Angiography: troubleshooting for artifacts
Shilpa Pandey
,
Michael Hakky
,
Ellie Kwak
,
Hernan Jara
,
Carl A. Geyer
,
Sami H. Erbay
Further Information

Publication History

Publication Date:
26 June 2014 (online)

Zusammenfassung

Bildgebende Untersuchungen von Nerven und Gefäßen zur Abklärung von Kopfschmerzen und psychischen Veränderungen, zum Workup nach einem Schlaganfall und zur Beurteilung der arteriovenösen Strukturen von Kopf und Hals gehören zur klinischen Routine. Derartige Untersuchungen werden immer häufiger durchgeführt, da der Anteil älterer Menschen an der Gesamtbevölkerung ständig wächst. Verschiedene Verfahren der Magnetresonanzangiografie sind in dieser Situation hilfreich. Jedoch erfordert die Beherrschung dieser Techniken ein tiefgehendes Verständnis der physikalischen Grundprinzipien, der komplexen Fließmuster und der Korrelation zwischen magnetresonanzangiografischen und konventionellen magnetresonanztomografischen Befunden. Zur Klärung schwieriger Fälle können mehrere Bildgebungsverfahren kombiniert werden, wobei jedes von ihnen spezifische Informationen liefert. Leider stellt die Integration der mit den verschiedenen Bildgebungsmodalitäten gewonnenen Befunde eine zusätzliche diagnostische Herausforderung dar. Um die Richtigkeit der Diagnosen zu gewährleisten, muss der Radiologe die Details all dieser Befunde sorgfältig im Lichte der physikalischen Grundprinzipien, der Grundlagen der verschiedenen Bildgebungstechniken und der Kenntnis häufiger Fehlerquellen bei der bildgebenden Untersuchung neurovaskulärer Strukturen würdigen.

Abstract

Neurovascular imaging studies are routinely used for the assessment of headaches and changes in mental status, stroke workup, and evaluation of the arteriovenous structures of the head and neck. These imaging studies are being performed with greater frequency as the aging population continues to increase. Magnetic resonance (MR) angiographic imaging techniques are helpful in this setting. However, mastering these techniques requires an in-depth understanding of the basic principles of physics, complex flow patterns, and the correlation of MR angiographic findings with conventional MR imaging findings. More than one imaging technique may be used to solve difficult cases, with each technique contributing unique information. Unfortunately, incorporating findings obtained with multiple imaging modalities may add to the diagnostic challenge. To ensure diagnostic accuracy, it is essential that the radiologist carefully evaluates the details provided by these modalities in light of basic physics principles, the fundamentals of various imaging techniques, and common neurovascular imaging pitfalls.

1 © 2013 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2013; 33: E113 – E123. Online published in 10.1148 /rg.333125148. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Clevert DA, Johnson T, Michaely H et al. High-grade stenoses of the internal carotid artery: comparison of high-resolution contrast enhanced 3D MRA, duplex sonography and power Doppler imaging. Eur J Radiol 2006; 60: 379-386
  • 2 Ito K, Kato J, Okada S et al. K-space filter effect in three-dimensional contrast MR angiography. Acta Radiol 1997; 38: 173-175
  • 3 Davis WL, Blatter DD, Harnsberger HR et al. Intracranial MR angiography: comparison of single-volume three-dimensional time-of-flight and multiple overlapping thin slab acquisition techniques. AJR Am J Roentgenol 1994; 163: 915-920
  • 4 Wedeen VJ, Weisskoff RM, Poncelet BP. MRI signal void due to in-plane motion is all-or-none. Magn Reson Med 1994; 32: 116-120
  • 5 von Schulthess GK, Higgins CB. Blood flow imaging with MR: spin-phase phenomena. Radiology 1985; 157: 687-695
  • 6 Bradley Jr WG, Waluch V. Blood flow: magnetic resonance imaging. Radiology 1985; 154: 443-450
  • 7 Kemmling A, Noelte I, Gerigk L et al. A diagnostic pitfall for intracranial aneurysms in time-of-flight MR angiography: small intracranial lipomas. AJR Am J Roentgenol 2008; 190: W62-W67
  • 8 Lin W, Haacke EM, Tkach JA. Three-dimensional time-of-flight MR angiography with variable TE (VARIETE) for fat signal reduction. Magn Reson Med 1994; 32: 678-683
  • 9 Ladd ME, Quick HH, Debatin JF. Interventional MRA and intravascular imaging. J Magn Reson Imaging 2000; 12: 534-546
  • 10 Drangova M, Pelc NJ. Artifacts and signal loss due to flow in the presence of B(0) inhomogeneity. Magn Reson Med 1996; 35: 126-130
  • 11 Stefansic JD, Paschal CB. Effects of acceleration, jerk, and field inhomogeneities on vessel positions in magnetic resonance angiography. Magn Reson Med 1998; 40: 261-271
  • 12 Holley P, Bonafe A, Brunet E et al. The contribution of “time-of-flight” MRI-angiography in the study of neurovascular interactions (hemifacial spasm and trigeminal neuralgia) [in French]. J Neuroradiol 1996; 23: 149-156
  • 13 Okamoto K, Ito J, Furusawa T et al. “Pseudoocclusion” of the internal carotid artery: a pitfall on intracranial MRA. J Comput Assist Tomogr 1997; 21: 831-833
  • 14 Kato Y, Sano H, Katada K et al. Effects of new titanium cerebral aneurysm clips on MRI and CT images. Minim Invasive Neurosurg 1996; 39: 82-85
  • 15 Teng MM, Nasir Qadri SM, Luo CB et al. MR imaging of giant intracranial aneurysm. J Clin Neurosci 2003; 10: 460-464
  • 16 Jäger HR, Ellamushi H, Moore EA et al. Contrast-enhanced MR angiography of intracranial giant aneurysms. AJNR Am J Neuroradiol 2000; 21: 1900-1907
  • 17 Oelerich M, Lentschig MG, Zunker P et al. Intracranial vascular stenosis and occlusion: comparison of 3D time-of-flight and 3D phase-contrast MR angiography. Neuroradiology 1998; 40: 567-573
  • 18 Mallouhi A, Chemelli A, Judmaier W et al. Investigation of cerebrovascular disease with MR angiography: comparison of volume rendering and maximum intensity projection algorithms – initial assessment. Neuroradiology 2002; 44: 961-967
  • 19 Davis CP, Hany TF, Wildermuth S et al. Postprocessing techniques for gadolinium-enhanced three-dimensional MR angiography. RadioGraphics 1997; 17: 1061-1077