Intensivmedizin up2date 2014; 10(02): 165-192
DOI: 10.1055/s-0034-1365552
Pädiatrische Intensivmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Kardiogener Schock – pädiatrische Besonderheiten

Susanne Grosbüsch
,
Nikolaus A. Haas
Further Information

Publication History

Publication Date:
23 May 2014 (online)

Kernaussagen
  • Ein kardiogener Schock ist bei Kindern im Vergleich zu Erwachsenen wesentlich seltener.

  • Die Ursachen für einen Schock bei Kindern sind vielfältig und unterscheiden sich deutlich von denen bei Erwachsenen.

  • Bei Kindern mit kardiogenem Schock unterscheidet sich die weitere Behandlung ganz erheblich von derjenigen bei septischen oder hypovolämischen Patienten. Eine aggressive Flüssigkeitstherapie kann den Patienten mit kardiogenem Schock sogar gefährden.

  • Es ist besonders wichtig, die wenigen Kinder mit rein kardiogenem Schock zügig zu identifizieren und spezifisch zu behandeln.

  • Die Therapie eines kardiogenen Schocks sollte möglichst immer eine ursachenspezifische, kurative Therapie sein.

  • Die medikamentöse Therapie des kardiogenen Schocks sollte als Zielparameter nicht den Blutdruck, sondern vor allem das Herzzeitvolumen haben. Die Kombination von Inotropika und Nachlastsenkung ist effektiver als eine alleinige Anhebung des Blutdrucks.

  • Sind alle Methoden der konservativen Therapie einer akuten Herzinsuffizienz ausgeschöpft, steht als letzte Möglichkeit die mechanische Kreislaufunterstützung zur Verfügung.

Die Literatur zu diesem Beitrag finden Sie unter http://dx.doi.org/10.1055/s-0034-1365552.

 
  • Literatur

  • 1 Biarent D, Bingham R, Eich C et al. Lebensrettende Maßnahmen bei Kindern („paediatric life support“). Notfall Rettungsmed 2010; 13: 635-664
  • 2 Rivers E, Ngyen B, Havstad S et al. Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. N Engl J Med 2001; 345: 1368-1377
  • 3 Chang P, Hsu HY, Chang MH et al. Shock in the pediatric emergency service: five years' experience. Acta Paediatr Taiwan 1999; 40: 9-12
  • 4 Waltzman M, Torrey SB, Wiley JF. Initial evaluation of shock in children. Uptodate 2013;
  • 5 Meyer L, Stubbs B, Fahrenbruch C et al. Incidence, causes an survival trends from cardiovascular-related sudden cardiac arrest in children and young adults 0–35 years of age: a 30-year review. Circulation 2012; 126: 1363
  • 6 López-Herce J, García C, Domínguez P et al. Outcome of out-of-hospital cardiorespiratory arrest in children. Pediatr Emerg Care 2005; 21: 807
  • 7 Stiller B, Berger F. Intensivmedizinische Behandlung der Herzinsuffizienz im Kindesalter. Intensivmedizin up2date 2007; 3: 313-331
  • 8 Veldman A, Rupp S, Schranz D. New inotropic strategies targeting the failing myocardium in the newborn and infant. Mini Rev Med Chem 2006; 6: 785-792
  • 9 Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134: 172-178
  • 10 Goepfert MS, Reuter DA, Akyol D et al. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 2007; 33: 96-103
  • 11 Brierley J, Carcillo JA et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Crit Care Med. Crit Care Med 2009; 37: 666-688
  • 12 Bellomo R, Chapman M, Finfer S et al. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZIS) Clinical Trials Group. Lancet 2000; 356: 2139-2143
  • 13 Bailey AR, Burchett KR. Effect of low-dose dopamine on serum concentrations of prolactin in critically ill patients. Br J Anaesth 1997; 78: 97-99
  • 14 Nevière R, Mathieu D, Chagnon JL et al. The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Resp Crit Care Med 1996; 154: 1684-1688
  • 15 Hoffman TM, Wernovsky G, Atz AM et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 2003; 107: 996-1002
  • 16 Meyer S, Gortner L, Brown K et al. The role of milrinone in children with cardiovascular compromise: review of the literature. Wien Med Wochenschr 2011; 161: 184-191
  • 17 Lechner E, Hofer A, Leitner-Peneder G et al. Levosimendan versus milrinone in neonates and infants after corrective open-heart surgery: a pilot study. Pediatr Crit Care Med 2012; 13: 542-548
  • 18 Stocker CF, Shekerdemian LS, Nørgaard MA et al. Mechanisms of a reduced cardiac output and the effects of milrinone and levosimendan in a model of infant cardiopulmonary bypass. Crit Care Med 2007; 35: 252-259
  • 19 Momeni M, Rubay J, Matta A et al. Levosimendan in congenital cardiac surgery: a randomized, double-blind clinical trial. J Cardiothorac Vasc Anesth 2011; 25: 419-424
  • 20 Agrawal A, Singh VK, Varma A et al. Therapeutic applications of vasopressin in pediatric patients. Indian Pediatr 2012; 49: 297-305
  • 21 Meyer S, McGuire W, Gottschling S et al. The role of vasopressin and terlipressin in catecholamine-resistant shock and cardio-circulatory arrest in children: review of the literature. Wien Med Wochenschr 2011; 161: 192-203
  • 22 Nishibe S, Tsujita M. The impact of intraoperative vasopressin infusion in complex neonatal cardiac surgery. Interact Cardiovasc Thorac Surg 2012; 15: 966-972
  • 23 Verweij EJ, Hogenbirk K, Roest AA et al. Serum cortisol concentration with exploratory cut-off values do not predict the effects of hydrocortisone administration in children with low cardiac output after cardiac surgery. Interact Cardiovasc Thorac Surg 2012; 15: 685-689
  • 24 Suominen PK, Dickerson HA, Moffett BS et al. Hemodynamic effects of rescue protocol hydrocortisone in neonates with low cardiac output syndrome after cardiac surgery. Pediatr Crit Care Med 2005; 6: 655-659
  • 25 Green ML, Koch J. Adrenocortical function in the postoperative pediatric cardiac surgical patient. Curr Opin Pediatr 2012; 24: 285-290
  • 26 Doherty DR, Parshuram CS, Gaboury I et al. Hypothermia therapy after pediatric cardiac arrest. Circulation 2009; 119: 1492-1500
  • 27 Bernard S. Hypothermia after cardiac arrest: expanding the therapeutic scope. Crit Care Med 2009; 37 : 227-233
  • 28 Portman MA, Slee A, Olson AK et al. Triiodothyronine Supplementation in Infants and Children Undergoing Cardiopulmonary Bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation 2010; 122 : 224-233
  • 29 Haas NA, Camphausen CK, Kececioglu D. Clinical review: thyroid hormone replacement in children after cardiac surgery – is it worth a try?. Crit Care 2006; 10: 213
  • 30 Camphausen C, Haas NA, Mattke AC. Successful treatment of oleander intoxication (cardiac glycosides) with digoxin-specific Fab antibody fragments in a 7-year-old child: case report and review of literature. Z Kardiol 2005; 94: 817-823
  • 31 Froehle M, Haas NA, Kirchner G et al. ECMO for Cardiac Rescue after Accidental Intravenous Mepivacaine Application. Case Rep Pediatr 2012; Article ID 491692
  • 32 Lemson J, Nusmeier A, van der Hoeven JG. Advanced hemodynamic monitoring in critically ill children. Pediatrics 2011; 128: 560-571
  • 33 Egan J, Festa M, Cole A et al. Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med 2005; 31: 568-573
  • 34 Cecchetti C, Stoppa F, Vanacore N et al. Monitoring of intrathoracicvolemia and cardiac output in critically ill children. Minerva Anestesiol 2003; 69: 907-918
  • 35 Pauli C, Fakler U, Genz T et al. Cardiac output determination in children: equivalence of the transpulmonarythermodilution method to the direct Fick principle. Intensive Care Med 2002; 28: 947-952
  • 36 Zulueta JL, Vida VL, Perisinotto E et al. Role of intraoperative regional oxygen saturation using near infrared spectroscopy in the prediction of low output syndrome after pediatric heart surgery. J Card Surg 2013; 28: 446-452
  • 37 Dhanani S, Barrowman NJ, Ward RE et al. Intra- and inter-observer reliability using a noninvasive ultrasound cardiac output monitor in healthy anesthetized children. Paediatr Anaesth 2011; 21: 858-864
  • 38 Knirsch W, Kretschmar O, Tomaske M et al. Cardiac output measurement in children: comparison of the Ultrasound Cardiac Output Monitor with thermodilution cardiac output measurement. Intensive Care Med 2008; 34: 1060-1064
  • 39 Schubert S, Schmitz T, Weiss M et al. Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery: evaluation of transesophageal Doppler and electric velocimetry. J Clin Monit Comput 2008; 22: 299-307
  • 40 Horster S, Stemmler HJ, Strecker N et al. Cardiac Output Measurements in Septic Patients: Comparing the Accuracy of USCOM to PiCCO. Crit Care Res Pract 2012; Article ID 270631
  • 41 He SR, Sun X, Zhang C et al. Measurement of systemic oxygen delivery and inotropy in healthy term neonates with the Ultrasonic Cardiac Output Monitor (USCOM). Early Hum Dev 2013; 89: 289-294
  • 42 Schiffmann H, Erdlenbruch B, Singer D et al. Assessment of cardiac output, intravascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants. J Cardiothorac Vasc Anesth 2002; 16: 592-597
  • 43 Wolf MJ, Kanter KR, Kirshbom PM et al. Extracorporeal cardiopulmonary resuscitation for pediatric cardiac patients. Ann Thorac Surg 2012; 94: 874-879
  • 44 Delmo Walter EM, Alexi-Meskishvili V, Huebler M et al. Rescue extracorporeal membrane oxygenation in children with refractory cardiac arrest. Interact Cardiovasc Thorac Surg 2011; 12: 929-934
  • 45 Nahum E, Dagan O, Lev A et al. Favorable outcome of pediatric fulminant myocarditis supported by extracorporeal membranous oxygenation. Pediatr Cardiol 2010; 31: 1059-1063
  • 46 Alsoufi B, Al-Radi OO, Nazer RI et al. Survival outcomes after rescue extracorporeal cardiopulmonary resuscitation in pediatric patients with refractory cardiac arrest. J Thorac Cardiovasc Surg 2007; 134: 952-959
  • 47 Delmo Walter EM, Stiller B, Hetzer R et al. Extracorporeal membrane oxygenation for perioperative cardiac support in children I: experience at the DeutschesHerzzentrum Berlin (1987–2005). ASAIO J 2007; 53: 246-254
  • 48 Ghelani SJ, Spaeder MC, Pastor W et al. Demographics, trends, and outcomes in pediatric acute myocarditis in the United States, 2006 to 2011. Circ Cardiovasc Qual Outcomes 2012; 5: 622-627
  • 49 Almond CS, Singh TP, Gauvreau K et al. Extracorporeal membrane oxygenation for bridge to heart transplantation among children in the United States: analysis of data from the Organ Procurement and Transplant Network and Extracorporeal Life Support Organization Registry. Circulation 2011; 123: 2975-2984
  • 50 Teele SA, Allan CK, Laussen PC et al. Management and outcomes in pediatric patients presenting with acute fulminant myocarditis. Pediatr 2011; 158: 638-643
  • 51 Costello JM, Cooper DS, Jacobs JP et al. Intermediate-term outcomes after paediatriccardiac extracorporeal membrane oxygenation – what is known (and unknown). Cardiol Young 2011; 21 (Suppl. 02) 118-123