Semin Musculoskelet Radiol 2014; 18(01): 023-035
DOI: 10.1055/s-0034-1365832
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Variants and Pitfalls in MR Imaging of the Spine

Sumer N. Shikhare
1   Department of Diagnostic Radiology, Khoo Teck Puat Hospital, Alexandra Health, Singapore, Republic of Singapore
,
Dinesh R. Singh
1   Department of Diagnostic Radiology, Khoo Teck Puat Hospital, Alexandra Health, Singapore, Republic of Singapore
,
Wilfred C.G. Peh
1   Department of Diagnostic Radiology, Khoo Teck Puat Hospital, Alexandra Health, Singapore, Republic of Singapore
› Author Affiliations
Further Information

Publication History

Publication Date:
10 February 2014 (online)

Abstract

MR imaging is a valuable tool in investigating the spine and is the diagnostic modality of choice in an increasing number of conditions. Advent of newer 3-T machines has taken MR imaging to a different level, with increased image resolution. Higher field strength magnets have also resulted in an increased number of artifacts. A sound knowledge of human anatomy and awareness of the common anatomical variants is an essential prerequisite in MR imaging of the spine because a variety of normal variants and benign conditions may potentially be confused with serious pathologies. This can significantly affect patient management, and it is essential to avoid such misdiagnoses. Identifying and eliminating the common artifacts on MR imaging can result in a significantly improved image quality. Awareness and knowledge of the common variants, common artifacts, and important distinguishing features among similar-appearing pathologies are important in avoiding the various potential pitfalls in spine imaging.

 
  • References

  • 1 Elliott JM, Flynn TW, Al-Najjar A, Press J, Nguyen B, Noteboom JT. The pearls and pitfalls of magnetic resonance imaging for the spine. J Orthop Sports Phys Ther 2011; 41 (11) 848-860
  • 2 Bozzo A, Marcoux J, Radhakrishna M, Pelletier J, Goulet B. The role of magnetic resonance imaging in the management of acute spinal cord injury. J Neurotrauma 2011; 28 (8) 1401-1411
  • 3 Smoker WR. Craniovertebral junction: normal anatomy, craniometry, and congenital anomalies. Radiographics 1994; 14 (2) 255-277
  • 4 Ghelman B, Freiberger RH. The limbus vertebra: an anterior disc herniation demonstrated by discography. AJR Am J Roentgenol 1976; 127 (5) 854-855
  • 5 Wigh RE. The thoracolumbar and lumbosacral transitional junctions. Spine 1980; 5 (3) 215-222
  • 6 Thawait GK, Chhabra A, Carrino JA. Spine segmentation and enumeration and normal variants. Radiol Clin North Am 2012; 50 (4) 587-598
  • 7 Peh WCG, Siu TH, Chan JHM. Determining the lumbar vertebral segments on magnetic resonance imaging. Spine 1999; 24 (17) 1852-1855
  • 8 Konin GP, Walz DM. Lumbosacral transitional vertebrae: classification, imaging findings, and clinical relevance. AJNR Am J Neuroradiol 2010; 31 (10) 1778-1786
  • 9 Apazidis A, Ricart PA, Diefenbach CM, Spivak JM. The prevalence of transitional vertebrae in the lumbar spine. Spine J 2011; 11 (9) 858-862
  • 10 Jhawar BS, Mitsis D, Duggal N. Wrong-sided and wrong-level neurosurgery: a national survey. J Neurosurg Spine 2007; 7 (5) 467-472
  • 11 Ross JS. Magnetic resonance imaging of the postoperative spine. Semin Musculoskelet Radiol 2000; 4 (3) 281-291
  • 12 Coleman LT, Zimmerman RA, Rorke LB. Ventriculus terminalis of the conus medullaris: MR findings in children. AJNR Am J Neuroradiol 1995; 16 (7) 1421-1426
  • 13 Bronskill MJ, McVeigh ER, Kucharczyk W, Henkelman RM. Syrinx-like artifacts on MR images of the spinal cord. Radiology 1988; 166 (2) 485-488
  • 14 Ciappetta P, D'urso PI, Luzzi S, Ingravallo G, Cimmino A, Resta L. Cystic dilation of the ventriculus terminalis in adults. J Neurosurg Spine 2008; 8 (1) 92-99
  • 15 Jung HS, Jee WH, McCauley TR, Ha KY, Choi KH. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics 2003; 23 (1) 179-187
  • 16 Baur A, Stäbler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 2002; 225 (3) 730-735
  • 17 Griffith JF, Guglielmi G. Vertebral fracture. Radiol Clin North Am 2010; 48 (3) 519-529
  • 18 Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A. Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imaging 2006; 24 (6) 1207-1220
  • 19 Karchevsky M, Babb JS, Schweitzer ME. Can diffusion-weighted imaging be used to differentiate benign from pathologic fractures? A meta-analysis. Skeletal Radiol 2008; 37 (9) 791-795
  • 20 Mylona E, Samarkos M, Kakalou E, Fanourgiakis P, Skoutelis A. Pyogenic vertebral osteomyelitis: a systematic review of clinical characteristics. Semin Arthritis Rheum 2009; 39 (1) 10-17
  • 21 Yoon SH, Chung SK, Kim KJ, Kim HJ, Jin YJ, Kim HB. Pyogenic vertebral osteomyelitis: identification of microorganism and laboratory markers used to predict clinical outcome. Eur Spine J 2010; 19 (4) 575-582
  • 22 Hong SH, Choi JY, Lee JW, Kim NR, Choi JA, Kang HS. MR imaging assessment of the spine: infection or an imitation?. Radiographics 2009; 29 (2) 599-612
  • 23 Shikhare SN, Singh DR, Shimpi TR, Peh WCG. Tuberculous osteomyelitis and spondylodiscitis. Semin Musculoskelet Radiol 2011; 15 (5) 446-458
  • 24 Diehn FE. Imaging of spine infection. Radiol Clin North Am 2012; 50 (4) 777-798
  • 25 Taber KH, Herrick RC, Weathers SW, Kumar AJ, Schomer DF, Hayman LA. Pitfalls and artifacts encountered in clinical MR imaging of the spine. Radiographics 1998; 18 (6) 1499-1521
  • 26 Thakkar RS, Malloy IV JP, Thakkar SC, Carrino JA, Khanna AJ. Imaging the postoperative spine. Radiol Clin North Am 2012; 50 (4) 731-747
  • 27 Georges C, Lefaix JL, Delanian S. Case report: resolution of symptomatic epidural fibrosis following treatment with combined pentoxifylline-tocopherol. Br J Radiol 2004; 77 (922) 885-887
  • 28 Braverman DL, Slipman CW, Lenrow DA. Using gabapentin to treat failed back surgery syndrome caused by epidural fibrosis: a report of 2 cases. Arch Phys Med Rehabil 2001; 82 (5) 691-693
  • 29 Wagner AL, Murtagh FR, Arrington JA, Stallworth D. Relationship of Schmorl's nodes to vertebral body endplate fractures and acute endplate disk extrusions. AJNR Am J Neuroradiol 2000; 21 (2) 276-281
  • 30 Rahme R, Moussa R. The Modic vertebral endplate and marrow changes: pathologic significance and relation to low back pain and segmental instability of the lumbar spine. AJNR Am J Neuroradiol 2008; 29 (5) 838-842
  • 31 Zhang YH, Zhao CQ, Jiang LS, Chen XD, Dai LY. Modic changes: a systematic review of the literature. Eur Spine J 2008; 17 (10) 1289-1299
  • 32 Masaryk TJ, Ross JS, Modic MT. High resolution MR imaging of sequestered lumbar intervertebral disks. AJR Am J Roentgenol 1988; 150 (5) 1155-1162
  • 33 Song KJ, Kim KB, Lee KB. Sequestrated thoracic disc herniation mimicking a tumoral lesion in the spinal canal—a case report. Clin Imaging 2012; 36 (4) 416-419
  • 34 Kim SJ, Song JH, Kim MH , et al. Sequestered disc mimicking benign neurogenic tumour: report of 2 cases. J Korean Neurosurg Soc 1997; 26 (4) 596-599
  • 35 Chee DWY, Peh WCG. Clinics in diagnostic imaging (127). Singapore Med J 2009; 50 (8) 834-839 ; quiz 840
  • 36 Dietrich O, Reiser MF, Schoenberg SO. Artifacts in 3-T MRI: physical background and reduction strategies. Eur J Radiol 2008; 65 (1) 29-35
  • 37 Morelli JN, Runge VM, Ai F , et al. An image-based approach to understanding the physics of MR artifacts. Radiographics 2011; 31 (3) 849-866
  • 38 Fink C, Puderbach M, Biederer J , et al. Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Invest Radiol 2007; 42 (6) 377-383
  • 39 Peh WCG, Chan JHM. Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol 2001; 30 (4) 179-191
  • 40 Soila KP, Viamonte Jr M, Starewicz PM. Chemical shift misregistration effect in magnetic resonance imaging. Radiology 1984; 153 (3) 819-820
  • 41 Frazzini VI, Kagetsu NJ, Johnson CE, Destian S. Internally stabilized spine: optimal choice of frequency-encoding gradient direction during MR imaging minimizes susceptibility artifact from titanium vertebral body screws. Radiology 1997; 204 (1) 268-272
  • 42 Cha JG, Jin W, Lee MH , et al. Reducing metallic artifacts in postoperative spinal imaging: usefulness of IDEAL contrast-enhanced T1- and T2-weighted MR imaging—phantom and clinical studies. Radiology 2011; 259 (3) 885-893
  • 43 Reeder SB, Pineda AR, Wen Z , et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 2005; 54 (3) 636-644