Semin Musculoskelet Radiol 2014; 18(02): 149-165
DOI: 10.1055/s-0034-1371017
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Role of PET/CT in the Evaluation of Skeletal Metastases

Anbalagan Kannivelu
1   Department of Diagnostic Radiology, Khoo Teck Puat Hospital, Singapore, Singapore
2   Department of Nuclear Medicine and PET, Singapore General Hospital, Singapore, Singapore
,
Kelvin S.H. Loke
2   Department of Nuclear Medicine and PET, Singapore General Hospital, Singapore, Singapore
,
Tian Yue Kok
2   Department of Nuclear Medicine and PET, Singapore General Hospital, Singapore, Singapore
,
Saabry Yusof Osmany
3   Radlink PET and Cardiac Imaging Pte Ltd, Singapore, Singapore
,
Syed Zama Ali
1   Department of Diagnostic Radiology, Khoo Teck Puat Hospital, Singapore, Singapore
2   Department of Nuclear Medicine and PET, Singapore General Hospital, Singapore, Singapore
,
Lu Suat-Jin
4   Nuclear Medicine and PET Centre, Mount Elizabeth Hospital, Singapore, Singapore
,
David Chee-Eng Ng
2   Department of Nuclear Medicine and PET, Singapore General Hospital, Singapore, Singapore
› Author Affiliations
Further Information

Publication History

Publication Date:
08 April 2014 (online)

Abstract

Osseous metastatic disease from malignancy is a common occurrence with significant patient morbidity and mortality as well as increasing health care expenditures. Patient management plans frequently change with the identification of skeletal metastasis and the upstaging of disease status. Bone scintigraphy remains the current mainstay of diagnostic imaging procedures in nuclear medicine for the early detection of skeletal metastasis owing to their high sensitivity. Emerging positron tracers and the increasing use and availability of hybrid single-photon emission computed tomography and positron emission tomography (PET)/computed tomography machines enable physicians to diagnose metastatic disease in bones with superior accuracy. This review introduces the basics of PET and the commonly used positron tracers used to evaluate skeletal metastases.

 
  • References

  • 1 Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002; 2 (8) 584-593
  • 2 Ziessman HA, O'Malley JP, Thrall JH, Fahey FH. Nuclear Medicine: The Requisites. 4th ed. Philadelphia, PA: Elsevier/Saunders; 2014
  • 3 Kahn D, Weiner GJ, Ben-Haim S , et al. Positron emission tomographic measurement of bone marrow blood flow to the pelvis and lumbar vertebrae in young normal adults. Blood 1994; 83 (4) 958-963
  • 4 Edelstyn GA, Gillespie PJ, Grebbell FS. The radiological demonstration of osseous metastases. Experimental observations. Clin Radiol 1967; 18 (2) 158-162
  • 5 Peh WC, Mutarak M. Imaging in bone metastases. Medscape Web site. Available at: http://emedicine.medscape.com/article/387840-overview . Updated March 8, 2013. Accessed December 17, 2013
  • 6 Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol 2004; 22 (14) 2942-2953
  • 7 Ghanem N, Lohrmann C, Engelhardt M , et al. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol 2006; 16 (5) 1005-1014
  • 8 Rubens RD. Bone metastases—incidence and complications. In: Rubens RD, Mundy GR, , eds. Cancer and the Skeleton. London, UK: Martin Dunitz; 2000: 33-42
  • 9 Cook GJ. PET and PET/CT imaging of skeletal metastases. Cancer Imaging 2010; 10: 1-8
  • 10 Blau M, Ganatra R, Bender MA. 18 F-fluoride for bone imaging. Semin Nucl Med 1972; 2 (1) 31-37
  • 11 Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med 1962; 3: 332-334
  • 12 Davis MA, Jones AL. Comparison of 99mTc-labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med 1976; 6 (1) 19-31
  • 13 Frost ML, Blake GM, Park-Holohan SJ , et al. Long-term precision of 18F-fluoride PET skeletal kinetic studies in the assessment of bone metabolism. J Nucl Med 2008; 49 (5) 700-707
  • 14 Hoh CK, Hawkins RA, Dahlbom M , et al. Whole body skeletal imaging with [18F]fluoride ion and PET. J Comput Assist Tomogr 1993; 17 (1) 34-41
  • 15 Gnanasegaran G, Cook G, Adamson K, Fogelman I. Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. Semin Nucl Med 2009; 39 (6) 380-395
  • 16 Society of Nuclear Medicine. Procedure guideline for bone scintigraphy, v.3.0, approved June 20, 2013. Available at: http://interactive.snm.org/docs/pg_ch34_0403.pdf . Accessed December 17, 2013
  • 17 Galasko CS. Skeletal metastases and mammary cancer. Ann R Coll Surg Engl 1972; 50 (1) 3-28
  • 18 Cook GJ, Fogelman I. Skeletal metastases from breast cancer: imaging with nuclear medicine. Semin Nucl Med 1999; 29 (1) 69-79
  • 19 Hortobagyi GN, Libshitz HI, Seabold JE. Osseous metastases of breast cancer. Clinical, biochemical, radiographic, and scintigraphic evaluation of response to therapy. Cancer 1984; 53 (3) 577-582
  • 20 Perez DJ, Powles TJ, Milan J , et al. Detection of breast carcinoma metastases in bone: relative merits of X-rays and skeletal scintigraphy. Lancet 1983; 2 (8350) 613-616
  • 21 Sudhakar P, Sharma AR, Bhushan SM, Ranadhir G, Narsimuhulu G, Rao VV. Efficacy of SPECT over planar bone scan in the diagnosis of solitary vertebral lesions in patients with low back pain. Indian J Nucl Med 2010; 25 (2) 44-48
  • 22 Mettler FA, Guiberteau MJ. Essentials of Nuclear Medicine Imaging. 6th ed. Philadelphia, PA: Elsevier/Saunders; 2012
  • 23 Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases. Semin Nucl Med 2005; 35 (2) 135-142
  • 24 Minn H, Clavo AC, Wahl RL. Influence of hypoxia on tracer accumulation in squamous-cell carcinoma: in vitro evaluation for PET imaging. Nucl Med Biol 1996; 23 (8) 941-946
  • 25 Society of Nuclear Medicine. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. Approved February 11, 2006. Available at: http://interactive.snm.org/docs/jnm30551_online.pdf . Accessed December 17, 2013
  • 26 Petrén-Mallmin M, Andréasson I, Ljunggren O , et al. Skeletal metastases from breast cancer: uptake of 18F-fluoride measured with positron emission tomography in correlation with CT. Skeletal Radiol 1998; 27 (2) 72-76
  • 27 Blake GM, Park-Holohan SJ, Fogelman I. Quantitative studies of bone in postmenopausal women using (18)F-fluoride and (99m)Tc-methylene diphosphonate. J Nucl Med 2002; 43 (3) 338-345
  • 28 Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 2008; 49 (1) 68-78
  • 29 Society of Nuclear Medicine. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. Approved June 4, 2010. Available at: http://snmmi.files.cms-plus.com/docs/MUSC_Sodium18F_with_PET-CT_Bone_V1-JNM.pdf . Accessed December 17, 2013
  • 30 Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 2006; 47 (2) 262-269
  • 31 Gabriel M, Decristoforo C, Kendler D , et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007; 48 (4) 508-518
  • 32 Blodgett TM, Mehta AS, Mehta AS, Laymon CM, Carney J, Townsend DW. PET/CT artifacts. Clin Imaging 2011; 35 (1) 49-63
  • 33 Cook GJ, Fogelman I, Maisey MN. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med 1996; 26 (4) 308-314
  • 34 Clavo AC, Brown RS, Wahl RL. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 1995; 36 (9) 1625-1632
  • 35 Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 1998; 25 (9) 1244-1247
  • 36 Schirrmeister H, Guhlmann A, Elsner K , et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 1999; 40 (10) 1623-1629
  • 37 Even-Sapir E, Metser U, Flusser G , et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 2004; 45 (2) 272-278
  • 38 Taira AV, Herfkens RJ, Gambhir SS, Quon A. Detection of bone metastases: assessment of integrated FDG PET/CT imaging. Radiology 2007; 243 (1) 204-211
  • 39 Metser U, Lerman H, Blank A, Lievshitz G, Bokstein F, Even-Sapir E. Malignant involvement of the spine: assessment by 18F-FDG PET/CT. J Nucl Med 2004; 45 (2) 279-284
  • 40 Damle NA, Bal C, Bandopadhyaya GP , et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 2013; 31 (4) 262-269
  • 41 Stafford SE, Gralow JR, Schubert EK , et al. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 2002; 9 (8) 913-921
  • 42 International Agency for Research on Cancer (World Health Organization). GLOBOCAN 12: Estimated cancer incidence, mortality and prevalence worldwide in 2012. Available at: http://globocan.iarc.fr/Default.aspx . Published December 12, 2013. Accessed December 17, 2013
  • 43 Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998; 16 (10) 3375-3379
  • 44 Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 2006; 36 (1) 73-92
  • 45 Ben-Haim S, Israel O. Breast cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 2009; 39 (6) 408-415
  • 46 Schirrmeister H, Guhlmann A, Kotzerke J , et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 1999; 17 (8) 2381-2389
  • 47 Damle N, Bal C, Bandopadhyaya G, Kumar L, Kumar P. Role of 18F fluoride PET/CT in the detection of bone metastases in breast cancer patients. J Nucl Med 2007; 48 (Supplement 2): 142P
  • 48 Dotan ZA. Bone imaging in prostate cancer. Nat Clin Pract Urol 2008; 5 (8) 434-444
  • 49 Cook GJ, Fogelman I. The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med 2001; 31 (3) 206-211
  • 50 Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006; 47 (2) 287-297
  • 51 Beheshti M, Langsteger W, Fogelman I. Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med 2009; 39 (6) 396-407
  • 52 Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 1996; 199 (3) 751-756
  • 53 Oyama N, Akino H, Kanamaru H , et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med 2002; 43 (2) 181-186
  • 54 Oyama N, Miller TR, Dehdashti F , et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 2003; 44 (4) 549-555
  • 55 Sandblom G, Sörensen J, Lundin N, Häggman M, Malmström PU. Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology 2006; 67 (5) 996-1000
  • 56 Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR. Comparison of [18 F]fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002; 168 (1) 273-280
  • 57 Schmid DT, John H, Zweifel R , et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 2005; 235 (2) 623-628
  • 58 Beheshti M, Vali R, Waldenberger P , et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 2008; 35 (10) 1766-1774
  • 59 Alavi A, Kung JW, Zhuang H. Implications of PET based molecular imaging on the current and future practice of medicine. Semin Nucl Med 2004; 34 (1) 56-69
  • 60 Chua S, Gnanasegaran G, Cook GJ. Miscellaneous cancers (lung, thyroid, renal cancer, myeloma, and neuroendocrine tumors): role of SPECT and PET in imaging bone metastases. Semin Nucl Med 2009; 39 (6) 416-430
  • 61 Schirrmeister H, Glatting G, Hetzel J , et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 2001; 42 (12) 1800-1804
  • 62 Vinjamuri M, Craig M, Campbell-Fontaine A, Almubarak M, Gupta N, Rogers JS. Can positron emission tomography be used as a staging tool for small-cell lung cancer?. Clin Lung Cancer 2008; 9 (1) 30-34
  • 63 Cheran SK, Herndon II JE, Patz Jr EF. Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 2004; 44 (3) 317-325
  • 64 Hetzel M, Arslandemir C, König H-H , et al. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res 2003; 18 (12) 2206-2214
  • 65 Krüger S, Buck AK, Mottaghy FM , et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2009; 36 (11) 1807-1812
  • 66 Muresan MM, Olivier P, Leclère J , et al. Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer 2008; 15 (1) 37-49
  • 67 Grünwald F, Menzel C, Bender H , et al. Comparison of 18FDG-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 1997; 7 (3) 327-335
  • 68 Schlüter B, Bohuslavizki KH, Beyer W, Plotkin M, Buchert R, Clausen M. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med 2001; 42 (1) 71-76
  • 69 Kollender Y, Bickels J, Price WM , et al. Metastatic renal cell carcinoma of bone: indications and technique of surgical intervention. J Urol 2000; 164 (5) 1505-1508
  • 70 Wu HC, Yen RF, Shen YY, Kao CH, Lin CC, Lee CC. Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphate bone scan to detect bone metastases in patients with renal cell carcinomas—a preliminary report. J Cancer Res Clin Oncol 2002; 128 (9) 503-506
  • 71 Schirrmeister H, Bommer M, Buck AK , et al. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur J Nucl Med Mol Imaging 2002; 29 (3) 361-366
  • 72 Hung G-U, Tsai C-C, Tsai S-C, Lin WY. Comparison of Tc-99m sestamibi and F-18 FDG-PET in the assessment of multiple myeloma. Anticancer Res 2005; 25 (6C) 4737-4741
  • 73 Fonti R, Salvatore B, Quarantelli M , et al. 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma. J Nucl Med 2008; 49 (2) 195-200
  • 74 Durie BG, Kyle RA, Belch A , et al; Scientific Advisors of the International Myeloma Foundation. Myeloma management guidelines: a consensus report from the Scientific Advisors of the International Myeloma Foundation. Hematol J 2003; 4 (6) 379-398
  • 75 Oberg K. Neuroendocrine gastrointestinal tumors—a condensed overview of diagnosis and treatment. Ann Oncol 1999; 10 (Suppl. 02) S3-S8
  • 76 Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med 2006; 36 (3) 228-247
  • 77 Scarsbrook AF, Ganeshan A, Statham J , et al. Anatomic and functional imaging of metastatic carcinoid tumors. Radiographics 2007; 27 (2) 455-477
  • 78 Leboulleux S, Dromain C, Vataire AL , et al. Prediction and diagnosis of bone metastases in well-differentiated gastro-entero-pancreatic endocrine cancer: a prospective comparison of whole body magnetic resonance imaging and somatostatin receptor scintigraphy. J Clin Endocrinol Metab 2008; 93 (8) 3021-3028
  • 79 Meijer WG, van der Veer E, Jager PL , et al. Bone metastases in carcinoid tumors: clinical features, imaging characteristics, and markers of bone metabolism. J Nucl Med 2003; 44 (2) 184-191
  • 80 Adams S, Baum R, Rink T, Schumm-Dräger PM, Usadel KH, Hör G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 1998; 25 (1) 79-83
  • 81 Baum RP, Niesen A, Leonhardi J , et al. Receptor PET/CT imaging of neuroendocrine tumors using theGa-68 labelled, high affinity somatostatin analogue DOTA-1-Nal3-octreotide (DOTA-NOC): clinical results in 327 patients. Eur J Nucl Med Mol Imaging 2005; 32: S54
  • 82 Moog F, Kotzerke J, Reske SN. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med 1999; 40 (9) 1407-1413
  • 83 Hollinger EF, Alibazoglu H, Ali A, Green A, Lamonica G. Hematopoietic cytokine-mediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med 1998; 23 (2) 93-98
  • 84 Steinborn MM, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 1999; 23 (1) 123-129
  • 85 Eustace S, Tello R, DeCarvalho V , et al. A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol 1997; 169 (6) 1655-1661
  • 86 Jones AL, Williams MP, Powles TJ , et al. Magnetic resonance imaging in the detection of skeletal metastases in patients with breast cancer. Br J Cancer 1990; 62 (2) 296-298
  • 87 Daldrup-Link HE, Franzius C, Link TM , et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 2001; 177 (1) 229-236
  • 88 Qu X, Huang X, Yan W, Wu L, Dai K. A meta-analysis of 18FDG-PET-CT, 18DG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur J Radiol 2012; 81 (5) 1007-1015
  • 89 Takenaka D, Ohno Y, Matsumoto K , et al. Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 2009; 30 (2) 298-308
  • 90 Mosavi F, Johansson S, Sandberg DT, Turesson I, Sörensen J, Ahlström H. Whole-body diffusion-weighted MRI compared with (18)F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am J Roentgenol 2012; 199 (5) 1114-1120
  • 91 Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis. J Nucl Med 2012; 53 (6) 928-938
  • 92 Podoloff DA, Ball DW, Ben-Josef E , et al. NCCN task force: clinical utility of PET in a variety of tumor types. J Natl Compr Canc Netw 2009; 7 (Suppl. 02) S1-S26
  • 93 Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med 2001; 45 (1) 27-37
  • 94 Iagaru A, Mittra E, Mosci C , et al. Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med 2013; 54 (2) 176-183
  • 95 Iagaru A, Mittra E, Yaghoubi SS , et al. Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med 2009; 50 (4) 501-505
  • 96 Kannivelu A, Kok TY, Padhy AK. The conundrum of PET/MR. World J Nucl Med 2012; 11 (1) 1-2
  • 97 Drzezga A, Souvatzoglou M, Eiber M , et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 2012; 53 (6) 845-855
  • 98 Imamura F, Kuriyama K, Seto T , et al. Detection of bone marrow metastases of small cell lung cancer with magnetic resonance imaging: early diagnosis before destruction of osseous structure and implications for staging. Lung Cancer 2000; 27 (3) 189-197
  • 99 Reischauer C, Froehlich JM, Koh DM , et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps—initial observations. Radiology 2010; 257 (2) 523-531
  • 100 Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 2012; 53 (8) 1244-1252