J Neurol Surg B Skull Base 2014; 75(03): 204-213
DOI: 10.1055/s-0034-1371362
Invited Review
Georg Thieme Verlag KG Stuttgart · New York

Diffusion-Weighted Imaging of Skull Lesions

Daniel T. Ginat
1   Department of Radiology, University of Chicago Medical Center, Chicago, Illinois, United States
,
Rajiv Mangla
2   Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States
,
Gabrielle Yeaney
3   Department of Pathology, University of Rochester Medical Center, Rochester, New York, United States
,
Sven Ekholm
2   Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States
› Author Affiliations
Further Information

Publication History

10 March 2012

03 November 2012

Publication Date:
12 March 2014 (online)

Abstract

Diffusion-weighted imaging can increase the conspicuity of skull lesions and be applied toward noninvasive differentiation of malignant from benign lesions. Malignant skull lesions generally display lower diffusivity than benign lesions, although there are exceptions, and clinical parameters and conventional imaging modalities should also be considered in the evaluation of skull lesions. Nevertheless, in some instances diffusion-weighted imaging (DWI) can be used for problem solving when conventional imaging features are indeterminate, such as with skull base involvement by nasopharyngeal carcinoma versus osteomyelitis. In addition, DWI may be useful for monitoring treatment effects. The use of readout segmented technique, parallel imaging, multishot acquisition, turbo spin-echo DWI, diffusion tensor imaging, and higher field strengths can improve image quality. The feasibility of implementing DWI for characterizing skull lesions, the DWI findings of benign and malignant skull lesions, and technical considerations are discussed in this article.

 
  • References

  • 1 Malayeri AA, El Khouli RH, Zaheer A , et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 2011; 31 (6) 1773-1791
  • 2 Hiwatashi A, Kinoshita T, Moritani T , et al. Hypointensity on diffusion-weighted MRI of the brain related to T2 shortening and susceptibility effects. AJR Am J Roentgenol 2003; 181 (6) 1705-1709
  • 3 Sasaki M, Yamada K, Watanabe Y , et al; Acute Stroke Imaging Standardization Group-Japan (ASIST-Japan) Investigators. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 2008; 249 (2) 624-630
  • 4 Moon WJ, Lee MH, Chung EC. Diffusion-weighted imaging with sensitivity encoding (SENSE) for detecting cranial bone marrow metastases: comparison with T1-weighted images. Korean J Radiol 2007; 8 (3) 185-191
  • 5 Nemeth AJ, Henson JW, Mullins ME, Gonzalez RG, Schaefer PW. Improved detection of skull metastasis with diffusion-weighted MR imaging. AJNR Am J Neuroradiol 2007; 28 (6) 1088-1092
  • 6 Abdel Razek A, Mossad A, Ghonim M. Role of diffusion-weighted MR imaging in assessing malignant versus benign skull-base lesions. Radiol Med (Torino) 2011; 116 (1) 125-132
  • 7 Ginat DT, Mangla R, Yeaney G, Johnson M, Ekholm S. Diffusion-weighted imaging for differentiating benign from malignant skull lesions and correlation with cell density. AJR Am J Roentgenol 2012; 198 (6) W597-601
  • 8 Lloret I, Server A, Taksdal I. Calvarial lesions: a radiological approach to diagnosis. Acta Radiol 2009; 50 (5) 531-542
  • 9 Khanam H, Lipper MH, Wolff CL, Lopes MB. Calvarial hemangiomas: report of two cases and review of the literature. Surg Neurol 2001; 55 (1) 63-67; discussion 67
  • 10 Chen S, Ikawa F, Kurisu K, Arita K, Takaba J, Kanou Y. Quantitative MR evaluation of intracranial epidermoid tumors by fast fluid-attenuated inversion recovery imaging and echo-planar diffusion-weighted imaging. AJNR Am J Neuroradiol 2001; 22 (6) 1089-1096
  • 11 Mishiro Y, Sakagami M, Kitahara T, Kondoh K, Okumura S. The investigation of the recurrence rate of cholesteatoma using Kaplan-Meier survival analysis. Otol Neurotol 2008; 29 (6) 803-806
  • 12 De Foer B, Vercruysse JP, Bernaerts A , et al. Detection of postoperative residual cholesteatoma with non-echo-planar diffusion-weighted magnetic resonance imaging. Otol Neurotol 2008; 29 (4) 513-517
  • 13 Dremmen MH, Hofman PA, Hof JR, Stokroos RJ, Postma AA. The diagnostic accuracy of non-echo-planar diffusion-weighted imaging in the detection of residual and/or recurrent cholesteatoma of the temporal bone. AJNR Am J Neuroradiol 2012; 33 (3) 439-444
  • 14 Hayden Gephart MG, Colglazier E, Paulk KL, Vogel H, Guzman R, Edwards MS. Primary pediatric skull tumors. Pediatr Neurosurg 2011; 47 (3) 198-203
  • 15 Hayashida Y, Hirai T, Yakushiji T , et al. Evaluation of diffusion-weighted imaging for the differential diagnosis of poorly contrast-enhanced and T2-prolonged bone masses: Initial experience. J Magn Reson Imaging 2006; 23 (3) 377-382
  • 16 Arana E, Diaz C, Latorre FF , et al. Primary intraosseous meningiomas. Acta Radiol 1996; 37 (6) 937-942
  • 17 Ginat DT, Mangla R, Yeaney G, Wang HZ. Correlation of diffusion and perfusion MRI with Ki-67 in high-grade meningiomas. AJR Am J Roentgenol 2010; 195 (6) 1391-1395
  • 18 Sanverdi SE, Ozgen B, Oguz KK , et al. Is diffusion-weighted imaging useful in grading and differentiating histopathological subtypes of meningiomas?. Eur J Radiol 2012; 81 (9) 2389-2395
  • 19 Ozgen B, Oguz KK, Cila A. Diffusion MR imaging features of skull base osteomyelitis compared with skull base malignancy. AJNR Am J Neuroradiol 2011; 32 (1) 179-184
  • 20 Sham JS, Cheung YK, Choy D, Chan FL, Leong L. Nasopharyngeal carcinoma: CT evaluation of patterns of tumor spread. AJNR Am J Neuroradiol 1991; 12 (2) 265-270
  • 21 Meyers SP, Hirsch Jr WL, Curtin HD, Barnes L, Sekhar LN, Sen C. Chondrosarcomas of the skull base: MR imaging features. Radiology 1992; 184 (1) 103-108
  • 22 Yeom KW, Lober RM, Mobley BC , et al. Diffusion-weighted MRI: distinction of skull base chordoma from chondrosarcoma. AJNR Am J Neuroradiol 2013; 34 (5) 1056-1061 , S1
  • 23 Bourgouin PM, Tampieri D, Robitaille Y , et al. Low-grade myxoid chondrosarcoma of the base of the skull: CT, MR, and histopathology. J Comput Assist Tomogr 1992; 16 (2) 268-273
  • 24 Li WY, Brock P, Saunders DE. Imaging characteristics of primary cranial Ewing sarcoma. Pediatr Radiol 2005; 35 (6) 612-618
  • 25 Moschovi M, Alexiou GA, Tourkantoni N , et al. Cranial Ewing's sarcoma in children. Neurol Sci 2011; 32 (4) 691-694
  • 26 Freling NJ, Merks JH, Saeed P , et al. Imaging findings in craniofacial childhood rhabdomyosarcoma. Pediatr Radiol 2010; 40 (11) 1723-1738; quiz 1855
  • 27 Lope LA, Hutcheson KA, Khademian ZP. Magnetic resonance imaging in the analysis of pediatric orbital tumors: utility of diffusion-weighted imaging. J AAPOS 2010; 14 (3) 257-262
  • 28 Hanrahan CJ, Christensen CR, Crim JR. Current concepts in the evaluation of multiple myeloma with MR imaging and FDG PET/CT. Radiographics 2010; 30 (1) 127-142
  • 29 Baur-Melnyk A, Buhmann S, Becker C , et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol 2008; 190 (4) 1097-1104
  • 30 Maeda M, Maier SE, Sakuma H, Ishida M, Takeda K. Apparent diffusion coefficient in malignant lymphoma and carcinoma involving cavernous sinus evaluated by line scan diffusion-weighted imaging. J Magn Reson Imaging 2006; 24 (3) 543-548
  • 31 Srinivasan A, Dvorak R, Perni K, Rohrer S, Mukherji SK. Differentiation of benign and malignant pathology in the head and neck using 3T apparent diffusion coefficient values: early experience. AJNR Am J Neuroradiol 2008; 29 (1) 40-44
  • 32 Iima M, Yamamoto A, Brion V , et al. Reduced-distortion diffusion MRI of the craniovertebral junction. AJNR Am J Neuroradiol 2012; 33 (7) 1321-1325
  • 33 Yamashita K, Yoshiura T, Hiwatashi A , et al. Detection of middle ear cholesteatoma by diffusion-weighted MR imaging: multishot echo-planar imaging compared with single-shot echo-planar imaging. AJNR Am J Neuroradiol 2011; 32 (10) 1915-1918
  • 34 Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a user's guide. Radiographics 2005; 25 (5) 1279-1297
  • 35 De Foer B, Vercruysse JP, Pilet B , et al. Single-shot, turbo spin-echo, diffusion-weighted imaging versus spin-echo-planar, diffusion-weighted imaging in the detection of acquired middle ear cholesteatoma. AJNR Am J Neuroradiol 2006; 27 (7) 1480-1482
  • 36 De Foer B, Vercruysse JP, Bernaerts A , et al. The value of single-shot turbo spin-echo diffusion-weighted MR imaging in the detection of middle ear cholesteatoma. Neuroradiology 2007; 49 (10) 841-848
  • 37 Curtis AT, Gilbert KM, Klassen LM, Gati JS, Menon RS. Slice-by-slice B1+ shimming at 7 T. Magn Reson Med 2012; 68 (4) 1109-1116
  • 38 Vandecaveye V, De Keyzer F, Nuyts S , et al. Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: correlation between radiologic and histopathologic findings. Int J Radiat Oncol Biol Phys 2007; 67 (4) 960-971
  • 39 Abdel Razek AA, Kandeel AY, Soliman N , et al. Role of diffusion-weighted echo-planar MR imaging in differentiation of residual or recurrent head and neck tumors and posttreatment changes. AJNR Am J Neuroradiol 2007; 28 (6) 1146-1152