Subscribe to RSS
DOI: 10.1055/s-0034-1372615
Eigenschaften von integrierten Versorgungsprogrammen und deren Einfluss auf den Patientennutzen: Ein Discrete-Choice Experiment für Versorgungsnetzwerke
Characteristics of Integrated Care Programmes and their Impact on Patient Benefit: A Discrete-Choice Experiment for Integrated Care NetworksPublication History
Publication Date:
07 July 2014 (online)
Zusammenfassung
Ziel: Innovative Versorgungsmodelle sollen die Reibungsverluste in der Versorgung minimieren. Die erfolgreiche Umsetzung von Versorgungsnetzwerken setzt voraus, dass diese von den Versicherten und Bürgern akzeptiert werden. Die Berücksichtigung der Präferenzen bei der Umsetzung ist ein wesentlicher Erfolgsfaktor. Ziel dieser Studie ist die Analyse von Patientenpräferenzen.
Methode: Mithilfe von Discrete-Choice Experimenten wurden 21 patientenrelevante Attribute von innovativen Versorgungsprogrammen untersucht. Auf der Basis „Balanced Overlapping Designs“ (Sawtooth) konnten insgesamt 140 Choice-Sets mit höchstmöglicher D-Effizienz generiert werden. Die 21 Attribute wurden zur Abfrage in 4 thematische Schwerpunkte unterteilt. Das Kostenattribut wurde als einheitlicher Komparator integriert. Die Auswertung erfolgte durch Random-Effects Logit Schätzung (STATA).
Ergebnisse: Die repräsentative Stichprobe (N=1 322) ergab, dass in allen 4 DCE-Blöcken das Attribut „Zusätzliche Kosten“ den stärksten Einfluss auf die Wahlentscheidung der Patienten (1: Koef.: 1,047; 2: Koef.: 1,105; 3: Koef.: 0,956; 4: Koef.: 0,954) hat. Es folgten: „Medizinische Geräte und Einrichtung“, „Wartezeit auf einen Termin“, „Berufserfahrung“, „Fahrzeit zur Behandlung“ und „Austausch klinischer Informationen“. Einen geringen Einfluss auf die Wahlentscheidungen hatten z. B. „Überleitungsmanagement“ und „Berücksichtigung der individuellen Lebensbedingungen“.
Schlussfolgerung: Um die Akzeptanz von innovativen Versorgungsprogrammen zu erhöhen, müssen die Präferenzen bekannt sein bzw. in das Design der Dienstleistungen integriert werden. Die vorliegende Studie versucht, die Perspektive von Patienten auf neue Versorgungssysteme abzubilden. Die Auswahlentscheidungen werden nicht wie erwartet durch innovative Ansätze wie das Fallmanagement oder die partizipative Entscheidungsfindung beeinflusst, sondern vielmehr durch die Qualität der Infrastruktur, die Wartezeit und Berufserfahrung.
Abstract
Purpose: Innovative care models shall reduce the frictional losses in health-care. The successful implementation of care networks requires the acceptance by the health care providers, by the patients and citizens as well as by the payers. The consideration of preferences is an essential factor for success. The aim of this study is to analyse patient preferences.
Methods: With the help of Discrete-Choice experiment 21 patient-relevant attributes of innovative healthcare programmes were examined. On the basis of a balanced overlapping design (sawtooth) a total of 140 choice sets with the highest possible D efficiency was generated. The 21 attributes were divided into 4 thematic priorities for analysis. The cost attribute was integrated as a uniform comparator. The evaluation was done by a random effects logit estimation (STATA).
Results: The representative samples (N=1 322) revealed that in all 4 DCE blocks the attribute “additional costs” had the strongest influence on the patients choice (1: coeff.; 1.047; 2: coeff.: 1.105; 3.: coeff.: 0.956; 4.: coeff.: 0.954). This was followed by “medical apparatus and facilities”, “waiting time for an appointment”, “professional experience”, “travelling time to treatment site”, and “exchange of clinical information”. “Transfer management” and “consideration of individual circumstances” for example, had a small influence on patient choice.
Conclusion: In order to increase the acceptance of innovative health-care programmes preferences must be known and integrated into the design of the services. The present study has attempted to depict the patients’ perspectives towards the new care systems. The individual selection decisions were not, as would be expected, influenced by the innovative approaches such as case management or shared decision making but rather by the quality of the infrastructure, the waiting times and professional experience.
-
Literatur
- 1 Amelung VE. Managed Care: Neue Wege im Gesundheitsmanagement. Springer 2012; 356-357
- 2 Bridges JFP, Jones C. Patient-based health technology assessment: A vision of the future. International journal of technology assessment in health care 2007; 23: 30-35
- 3 Porter ME, Teisberg EO. Redefining health care: creating value-based competition on results. Boston, Mass: Harvard Business School Press; 2006
- 4 Wensing M, Jung HP, Mainz J et al. A systematic review of the literature on patient priorities for general practice care. Part 1: Description of the research domain. Soc Sci Med 1998; 47: 1573-1588
- 5 Campbell SM, Roland MO, Buetow SA. Defining quality of care. Soc Sci Med 2000; 51: 1611-1625
- 6 Coulter A. What do patients and the public want from primary care?. Bmj 2005; 331: 1199-1201
- 7 Laine C, Davidoff F. Patient-centered medicine. A professional evolution. Jama 1996; 275: 152-156
- 8 Hauber AB. Healthy-years equivalent: wounded but not yet dead. Expert review of pharmacoeconomics & outcomes research 2009; 9: 265-270
- 9 Ryan M, Hughes J. Using conjoint analysis to assess women’s preferences for miscarriage management. Health Econ 1997; 6: 261-273
- 10 Ryan M, Farrar S. Using conjoint analysis to elicit preferences for health care. Bmj 2000; 320: 1530-1533
- 11 Ryan M, Gerard K. Using discrete choice experiments to value health care programmes: current practice and future research reflections. Appl Health Econ Health Policy 2003; 2: 55-64
- 12 Ben-Akiva ME, Lerman SR. Discrete choice analysis: theory and application to travel demand. Cambridge, Mass. [u. a.]: MIT Press; 1985
- 13 Lancaster KJ. A new approach to consumer theory. Indianapolis, Ind. [u. a.]: Bobbs-Merrill; 1966
- 14 Lancaster K.. Consumer demand: a new approach. New York [u. a.]: Columbia Univ. Press; 1971
- 15 Bridges JF. Stated preference methods in health care evaluation: an emerging methodological paradigm in health economics. Appl Health Econ Health Policy 2003; 2: 213-224
- 16 Louviere J, Hensher D, Swait J. Stated choice methods: analysis and applications. Cambridge University Press; 2000
- 17 Bridges JFP, Hauber AB, Marshall D et al. Conjoint Analysis Applications in Health – a Checklist: A Report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. Value in health. 2011
- 18 Mühlbacher A, Bethge S, Schulman K. Patient-Centered Health Care Delivery Systems: A Discrete-Choice Experiment. Value in Health, Elsevier 2011; 14: A349
- 19 Bridges JF, Kinter ET, Kidane L et al. Things are Looking up Since We Started Listening to Patients: Trends in the Application of Conjoint Analysis in Health 1982–2007. The Patient: Patient-Centered Outcomes Research 2008; 14: 273-282
- 20 Johnson FR, Van Houtven G, Ozdemir S et al. Multiple sclerosis patients’ benefit-risk preferences: serious adverse event risks versus treatment efficacy. J Neurol 2009; 256: 554-562
- 21 Hauber A, Johnson F, Fillit H et al. Older Americans Risk-benefit Preferences for Modifying the Course of Alzheimer Disease. Alzheimer disease and associated disorders 2009; 23: 23-32
- 22 Telser H, Becker K, Zweifel P et al. Validity and reliability of willingness-to-pay estimates: evidence from two overlapping discrete-choice experiments. In: Elektronische Ressource. ed Zürich: Univ.; 2008
- 23 Bryan S, Gold L, Sheldon R et al. Preference measurement using conjoint methods: an empirical investigation of reliability. Health Econ 2000; 9: 385-395
- 24 Bryan S, Parry D. Structural reliability of conjoint measurement in health care: an empirical investigation. Applied economics 2002; 34: 561-568
- 25 Mühlbacher A, Bethge S, Tockhorn A. Präferenzmessung im Gesundheitswesen: Grundlagen von Discrete-Choice-Experimenten [Measuring Preferences in Healthcare: Introduction to Discrete-Choice Experiments]. Gesundheitsökonomie & Qualitätsmanagement 2013; 4: 159-172
- 26 Juhnke C, Mühlbacher A. Patient-centredness in integrated healthcare delivery systems-needs, expectations and priorities for organised healthcare systems. International Journal of Integrated Care (in press) 2013;
- 27 Bech M, Kjaer T, Lauridsen J. Does the number of choice sets matter? Results from a web survey applying a discrete choice experiment. Health economics 2011; 20: 273-286
- 28 Orme B. Getting started with conjoint analysis. Madison: 2005
- 29 Bech M, Gyrd-Hansen D. Effects coding in discrete choice experiments. Health Econ 2005; 14: 1079-1083
- 30 Lancsar E, Louviere J, Flynn T. Several methods to investigate relative attribute impact in stated preference experiments. Soc Sci Med 2007; 64: 1738-1753
- 31 Ryan M, Gerard K, Amaya-Amaya M. Using discrete choice experiments to value health and health care. Dordrecht: Springer; 2008. XIX, 254 S
- 32 Institute of Medicine . Crossing the quality chasm: a new health system for the 21st century. Washington, DC: National Acad. Press; 2001
- 33 Marshall D. A Radical Idea. Make Patient Preferences an Integral Part of Health ISPOR Connections 2013; 19: 3-4
- 34 McFadden D. Conditional logit analysis of qualitative choice behavior. In: Zarembka P. Hrsg Frontiers in econometrics. New York: Academic Press; 1974: 105-142
- 35 Thurstone LL. A law of comparative judgment. Scaling: A sourcebook for behavioral scientists 1974; 81-92
- 36 Organization WH , Declaration of Alma-Ata. In: International conference on primary health care. Alma-Ata, USSR; 1978: 12
- 37 World Health Organisation Europe (WHO) . Roadmap: Strengthening people-centred health systems in the WHO European Region; A Framework for Action towards Coordinated/Integrated Health Service Delivery (DIHSD). In: Programme HSD. (ed.). Copenhagen: 2013
- 38 Schoen C, Osborn R, Squires D et al. How Health Insurance Design Affects Access To Care And Costs, By Income, In Eleven Countries. Health Affair 2010; 29: 2323-2334
- 39 Rotar-Pavlič D, Švab I, Wetzels R. How do older patients and their GPs evaluate shared decision-making in healthcare?. BMC geriatrics 2008; 8: 9
- 40 Say R, Murtagh M, Thomson R. Patients’ preference for involvement in medical decision making: a narrative review. Patient Education and Counseling 2006; 60: 102-114