Abstract
This study examined the relationship between the phenotypic and anthropometric characteristics and the cycling time to exhaustion (Tlim) at the maximal aerobic power output (Pmax). 12 (7 men, 5 women) physically-active participants performed a square-wave test at Pmax to determine the maximal time limit. Muscle histochemistry, enzymatic activities and buffer capacity were determined from a vastus lateralis muscle biopsy, lean body mass (LBM) by hydrostatic weighing, and total (TV) and lean (LV) volumes of the thigh by anthropometric measurements. The mean (±SD) Tlim was 235±84 s (score range: 108–425 s). No relationship was found between Tlim and any muscle phenotypes. However, we observed a strong, linear relationship between Tlim and LBM (r=0.84, P<0.05). Thigh TV and LV displayed weaker correlation coefficients with Tlim (r=0.66 and r=0.73, respectively; P<0.05). We further estimated the femur length and found this measure to correlate with Tlim (r=0.81, P<0.05). This study suggests that muscle phenotypes may not be representative of Tlim. Rather, anthropometric characteristics account for such performance by conferring a biomechanical advantage in cycling. We conclude that, in addition to metabolic factors, anthropometric characteristics with reasonable accuracy predict Tlim in cycling, and may account for the large inter-subject variability observed in previous studies.
Key words
time limit - lean body mass - muscle phenotypes - biomechanics - cycling