Synthesis 2014; 46(20): 2808-2814
DOI: 10.1055/s-0034-1378530
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Oxidative Cleavage of Oxazinocarbazoles: Atropselective Access to Medium-Sized Rings

Gu Liu
,
Christopher S. Lancefield
,
Magali M. Lorion
,
Alexandra M. Z. Slawin
,
Nicholas J. Westwood*
Further Information

Publication History

Received: 27 March 2014

Accepted after revision: 27 June 2014

Publication Date:
30 July 2014 (online)


Dedicated to Professor Philip D. Magnus on the occasion of his 70th birthday

Abstract

Polycyclic systems can be converted into medium-sized-ring-containing compounds through the controlled oxidative cleavage of internal double bonds. This approach is particularly accessible in systems that contain a suitably substituted indole ring. Here, a robust approach to the synthesis of the understudied oxazinocarbazole system is reported. After regioselective incorporation of a carbonyl functional group, m-chloroperoxybenzoic acid (MCPBA) is used to cleave the indole 2,3-double bond that this system contains. This results in a competition between two processes, oxidative cleavage of the double bond and a pinacol-type rearrangement, both of which occur with very high diastereoselectivity. The balance between the two processes is studied as a function of the substrate structure. Extensive use of X-ray crystallographic analysis of the products enables detailed mechanistic conclusions to be drawn.

Supporting Information

 
  • References

  • 1 These authors have contributed equally to this work.
  • 2 For a review of the biological activity of pirlindole, the key representative of this structural class, see: Bruhwyler J, Liegeois JF, Geczy J. Pharm. Res. 1997; 36: 23

    • For a very recent example of the synthesis of a tetracyclic compound, see:
    • 3a Chiarucci M, Matteucci E, Cera G, Fabrizi G, Bandini M. Chem. Asian J. 2013; 8: 1776

    • For the synthesis of related tricyclic systems, see:
    • 3b Demerson CA, Santroch G, Humber LG. J. Med. Chem. 1975; 18: 577
    • 3c An J, Chang N.-J, Song L.-D, Jin Y.-Q, Ma Y, Chen J.-R, Xiao W.-J. Chem. Commun. 2011; 47: 1869
    • 3d Lombardo VM, Thomas CD, Scheidt KA. Angew. Chem. Int. Ed. 2013; 52: 12910
    • 3e Gharpure SJ, Sathiyanarayanan AM. Chem. Commun. 2011; 47: 3625
  • 4 For a recent review, see: Rajagopalan A, Lara M, Kroutil W. Adv. Synth. Catal. 2013; 355: 3321

    • For reviews and selected examples from this large area of the literature, see:
    • 5a Stach H, Hesse M. Tetrahedron 1988; 44: 1573
    • 5b Roxburgh CJ. Tetrahedron 1993; 49: 10749
    • 5c Constantieux T, Rodriquez J. Science of Synthesis 2005; 26: 413
    • 5d Fink BE, Gavai AV, Tokarski JS, Goyal B, Misra R, Xiao HY, Kimball SD, Han W.-C, Norris D, Spires TE, You D, Gottardis MM, Lorenzi MV, Vite GD. Bioorg. Med. Chem. Lett. 2006; 16: 1532
    • 5e Silva RS. F, Guimaraes TT, Teixeira DV, Lobato AP. G, Pinto MC. F. R, Simone CA, Soares JG, Cioletti AG, Goulart MO. F, Pinto AV. J. Braz. Chem. Soc. 2005; 16: 1074
    • 5f Tratrat C, Giorgi-Renault S, Husson H.-P. J. Org. Chem. 2000; 65: 6773
    • 5g Lancefield CS, Zhou L, Lebl T, Slawin AM. Z, Westwood NJ. Org. Lett. 2012; 14: 6166
  • 6 Hussain H, Al-Harrasi A, Green IR, Ahmed I, Abbas G, Rehman NU. RSC Adv. 2014; 4: 12882

    • For examples, see:
    • 7a Williams RM, Glinka T, Kwast E, Coffman H, Stille JK. J. Am. Chem. Soc. 1990; 112: 808
    • 7b Ashcroft WR, Dalton L, Beal MG, Humphrey GL, Joule JA. J. Chem. Soc., Perkin Trans. 1 1983; 2409
    • 7c Guller R, Borschberg HJ. Tetrahedron Lett. 1994; 35: 865
  • 8 Jones AM, Liu G, Lorion MM, Patterson S, Lebl T, Slawin AM. Z, Westwood NJ. Chem. Eur. J. 2011; 17: 5714
  • 9 Robinson B. Chem. Rev. 1969; 69: 227
    • 10a Gudmundsson KS, Boggs SD. WO 2006026703, 2006
    • 10b Gazengel JM, Lancelot JC, Rault S, Robba M. J. Heterocycl. Chem. 1990; 27: 1947
    • 11a Yoshida K, Goto J, Ban Y. Chem. Pharm. Bull. 1987; 35: 4700
    • 11b Li X, Vince R. Bioorg. Med. Chem. 2006; 14: 2942
  • 12 The presence of a nitro substituent has been shown to have a detrimental effect in some Fisher indole cyclisation reactions. For example, see: Hutchins SM, Chapman KT. Tetrahedron Lett. 1996; 37: 1869
    • 13a Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1986
    • 13b Hillier MC, Marcoux JF, Zhao D, Grabowski EJ. J, McKeown AE, Tillyer RD. J. Org. Chem. 2005; 70: 8385
  • 14 Sissouma D, Collet SC, Guingant AY. Synlett 2004; 2612
  • 15 See CCDC 1003944–1003950 for the small-molecule X-ray crystallographic analysis of 10c, 10h, 11c, 12c, 12f, 12h and 16, respectively.

    • For some recent examples of atropisomerism in medium-sized-ring-containing compounds, see:
    • 16a Nicolaou KC, Harrison ST. J. Am. Chem. Soc. 2007; 129: 429
    • 16b Burns NZ, Krylova IN, Hannoush RN, Baran PS. J. Am. Chem. Soc. 2009; 131: 9172
    • 16c Lebl T, Lorion MM, Jones AM, Philp D, Westwood NJ. Tetrahedron 2010; 66: 9694
    • 16d For a recent review of atropisomerism, see: Clayden J, Moran W, Edwards P, LaPlante S. Angew. Chem. Int. Ed. 2009; 48: 6398
  • 17 For a recent example of related structures, see: Liu S, Scotti JS, Kozmin SA. J. Org. Chem. 2013; 78: 8645
    • 18a Davies SG, Key MS, Rodriquez-Solla H, Sanganee HJ, Savory ED, Smith AD. Synlett 2003; 1659
    • 18b Aciro C, Davies SG, Garner AC, Ishii Y, Key MS, Ling KB, Prasad RS, Roberts PM, Rodriguez-Solla H, O’Leary-Steele C, Russell AJ, Sanganee HJ, Savory ED, Smith AD, Thomson JE. Tetrahedron 2008; 64: 9320
    • 19a Halcomb RL, Danishefsky SJ. J. Am. Chem. Soc. 1989; 111: 6661
    • 19b Murray RW, Singh M. Org. Synth. 1997; 74: 91