Synlett 2014; 25(17): 2508-2512
DOI: 10.1055/s-0034-1378583
letter
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free Hunsdiecker Reaction of Electron-Rich Arenecarboxylic Acids and Aryl Aldehydes in Water

Zejiang Li
State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. of China    Fax: +86(931)8915557   Email: liuzhq@lzu.edu.cn
,
Kunkai Wang
State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. of China    Fax: +86(931)8915557   Email: liuzhq@lzu.edu.cn
,
Zhong-Quan Liu*
State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. of China    Fax: +86(931)8915557   Email: liuzhq@lzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 27 May 2014

Accepted after revision: 11 July 2014

Publication Date:
18 August 2014 (online)


Abstract

An I2O5-mediated decarboxylative and decarbonylative bromination/iodination of electron-rich arenecarboxylic acids and aryl aldehydes by using KBr/KI as the halogen source in water has been developed. This scalable, low-cost, and transition-metal-free halogenation allows convenient access to aryl bromide and iodide under mild conditions.

Supporting Information

 
  • References and Notes

    • 1a Johnson RG, Ingham RK. Chem. Rev. 1956; 56: 219
    • 1b Wilson CV. Org. React. 1957; 332
    • 1c Sheldon RA, Kochi JK. Org. React. 1972; 19: 279
    • 1d Crich D. Comp. Org. Synth. 1991; 7: 717
    • 2a De la Mare PB. Electrophilic Halogenation . Cambridge University Press; Cambridge: 1976. Chap. 5
    • 2b Taylor R. Electrophilic Aromatic Substitution . Wiley; Chichester: 1990
    • 2c Gribble GW. Chem. Soc. Rev. 1999; 28: 335
    • 2d Butler A, Walker JV. Chem. Rev. 1993; 93: 1937
    • 2e Seevers RH, Counsell RE. Chem. Rev. 1982; 82: 575
  • 3 Hunsdiecker H, Hunsdiecker C. Ber. Dtsch. Chem. Ges. B 1942; 75: 291
  • 4 Cristol SJ, Firth WC. Jr. J. Org. Chem. 1961; 26: 280
  • 5 Barton DH. R, Faro HP, Serebryakov EP, Woolsey NF. J. Chem. Soc. 1965; 2438
    • 6a Kochi JK. J. Am. Chem. Soc. 1965; 87: 2500
    • 6b Kochi JK. J. Org. Chem. 1965; 30: 3265
    • 6c Kochi JK. Science 1967; 155: 415
    • 7a Wang Z, Zhu L, Yin F, Su Z, Li Z, Li C. J. Am. Chem. Soc. 2012; 134: 4258
    • 7b Yin F, Wang Z, Li Z, Li C. J. Am. Chem. Soc. 2012; 134: 10401
    • 7c Liu X, Wang Z, Cheng X, Li C. J. Am. Chem. Soc. 2012; 134: 14330
  • 8 Kulbitski K, Nisnevich G, Gandelman M. Adv. Synth. Catal. 2011; 353: 1438
  • 9 Hamamoto H, Hattori S, Takemaru K, Miki Y. Synlett 2011; 1563
    • 10a Chai L, Zhao Y, Sheng Q, Liu Z.-Q. Tetrahedron Lett. 2006; 47: 9283
    • 10b Liu Z.-Q, Zhao Y, Luo H, Chai L, Sheng Q. Tetrahedron Lett. 2007; 48: 3017
    • 10c Liu Z.-Q, Shang X, Chai L, Sheng Q. Catal. Lett. 2008; 123: 317
  • 11 Nicolaou KC, Montagnon T, Baran PS. Angew. Chem. Int. Ed. 2002; 41: 1386
  • 12 Hiroto U, Keiji N, Katsumi O. JP 06040710, 1994
    • 13a Ochiai M, Takeuchi Y, Katayama T, Sueda T, Miyamoto K. J. Am. Chem. Soc. 2005; 127: 12244
    • 13b Dohi T, Maruyama A, Yoshimura M, Morimoto K, Tohma H, Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
    • 13c Yoshimura A, Middleton KR, Zhu C, Nemykin VN, Zhdankin VV. Angew. Chem. Int. Ed. 2012; 51: 8059
    • 13d Uyanik M, Okamoto H, Yasui T, Ishihara K. Science 2010; 328: 1376
    • 14a Toda F, Schmeyers J. Green Chem. 2003; 5: 701
    • 14b Subbarayappa A, Ghosh S, Patoliya PU, Ramachandraiah G, Agrawal M, Gandhi MR, Upadhyay SC, Ghosh PK, Ranu BC. Green Chem. 2008; 10: 232
    • 14c Podgoršek A, Eissen M, Fleckenstein J, Stavber S, Zupana M, Iskra J. Green Chem. 2009; 11: 120
    • 14d Wang G.-W, Gao J. Green Chem. 2012; 14: 1125
    • 15a Nilsson M. Acta Chem. Scand. 1958; 12: 537
    • 15b Tanaka D, Romeril SP, Myers AG. J. Am. Chem. Soc. 2005; 127: 10323
    • 15c Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
    • 15d Rodríguez N, Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 15e Shang R, Ji D.-S, Chu L, Fu Y, Liu L. Angew. Chem. Int. Ed. 2011; 50: 4470
    • 15f Wang J, Cui Z, Zhang Y, Li H, Wu L.-M, Liu Z.-Q. Org. Biomol. Chem. 2011; 9: 663
  • 16 Representative Procedure for Decarboxylative Iodination A mixture of aryl carboxylic acids or aldehydes (0.2 mmol, 1 equiv), KI (0.5 mmol, 2.5 equiv), I2O5 (0.4 mmol, 2 equiv), and H2O (2 mL) was heated in an open flask at 50 °C for 22 h. After the reaction finished, a sat. aq solution of Na2S2O3 (5 mL) was added into the mixture, then it was abstracted by CH2Cl2 (3 × 5 mL). The organic layer was dried with anhydrous Na2SO4, the filtrate was evaporated under vacuum and purified by column chromatography to afford the desired product. Representative Procedure for Decarboxylative Bromination A mixture of aryl carboxylic acids or aldehydes (0.2 mmol, 1 equiv), KBr (0.5 mmol, 2.5 equiv), I2O5 (0.4 mmol, 2 equiv), and H2O (2 mL) was heated in an open flask at 25 °C for 22 h. After the reaction finished, a sat. aq solution of Na2S2O3 (5 mL) was added into the mixture, then it was abstracted by CH2Cl2 (3 × 5 mL). The organic layer was dried with anhydrous Na2SO4, the filtrate was evaporated under vacuum and purified by column chromatography to afford the desired product.