Synthesis 2015; 47(23): 3687-3700
DOI: 10.1055/s-0034-1378870
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Aerobic Oxidative Carbocyclization Reactions of N-[(E)-Stilben-2-yl]amine Derivatives

Cheng-Yen Lu
Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101, Taiwan   Email: cpchuang@mail.ncku.edu.tw
,
Che-Ping Chuang*
Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101, Taiwan   Email: cpchuang@mail.ncku.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 25 May 2015

Accepted after revision: 29 June 2015

Publication Date:
14 August 2015 (online)


Abstract

A synthetic method for highly functionalized 2-quinolinones and quinolines has been developed. The copper(II)-catalyzed aerobic oxidative carbocyclization reactions of α-substituted N-[(E)-stilben-2-yl]acetamides, via the intramolecular carbocupration onto the alkenyl moiety, produced 3-substituted 2-quinolinones. Several useful functional groups including benzoyl, acetyl, cyano, and ethoxycarbonyl groups are compatible with the reaction conditions. This strategy was further applied to N-[(E)-stilben-2-yl]enamines to prepare 2,3-disubstituted quinolines in good yields.

Supporting Information

 
  • References

    • 1a Patel M, McHugh RJ. Jr, Cordova BC, Klabe RM, Bacheler LT, Erickson-Viitanen S, Rodgers JD. Bioorg. Med. Chem. Lett. 2001; 11: 1943
    • 1b Yong SR, Ung AT, Pyne SG, Skelton BW, White AH. Tetrahedron 2007; 63: 1191
    • 1c Ellis D, Kuhen KL, Anaclerio B, Wu B, Wolff K, Yin H, Bursulaya B, Caldwell J, Karanewsky D, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 4246
    • 1d Fujioka T, Teramoto S, Mori T, Hosokawa T, Sumida T, Tominaga M, Yabuuchi Y. J. Med. Chem. 1992; 35: 3607
    • 1e Hayashi H, Miwa Y, Miki I, Ichikawa S, Yoda N, Ishii A, Kono M, Suzuki F. J. Med. Chem. 1992; 35: 4893
    • 1f Angibaud PR, Venet MG, Filliers W, Broeckx R, Ligny YA, Muller P, Poncelet VS, End DW. Eur. J. Org. Chem. 2004; 479
    • 1g Boy KM, Guernon JM, Sit S.-Y, Xie K, Hewawasam P, Boissard CG, Dworetzky SI, Natale J, Gribkoff VK, Lodge N, Starret JE. Bioorg. Med. Chem. Lett. 2004; 14: 5089

      For reviews on 2-quinolinone synthesis, see:
    • 2a Jones G In Comprehensive Heterocyclic Chemistry . Vol. 2. Boulton AJ, Mckillop A. Pergamon; Oxford: 1984: 395-510
    • 2b Koltunov KY, Walspurger S, Sommer J. Chem. Commun. 2004; 1754
    • 2c Li K, Forsee LN, Tunge JA. J. Org. Chem. 2005; 70: 2881
    • 2d Sai KK. S, Gilbert TM, Klumpp DA. J. Org. Chem. 2007; 72: 9761
    • 2e Domínguez-Fernández F, López-Sanz J, Pérez-Mayoral E, Bek D, Martín-Aranda RM, López-Peinado AJ, Čejka J. ChemCatChem 2009; 1: 241
    • 3a Clark AJ, Jones K, McCarthy C, Storey JM. D. Tetrahedron Lett. 1991; 32: 2829
    • 3b Binot G, Zard SZ. Tetrahedron Lett. 2005; 46: 7503
    • 3c Zhou W, Zhang L, Jiao N. Tetrahedron 2009; 65: 1982
    • 3d Tsubusaki T, Nishino H. Tetrahedron 2009; 55: 9448
    • 3e Mai W.-P, Sun G.-C, Wang J.-T, Song G, Mao P, Yang L.-R, Yuan J.-W, Xiao Y.-M, Qu L.-B. J. Org. Chem. 2014; 79: 8094
    • 4a Lee CG, Lee KY, Lee S, Kim JN. Tetrahedron Lett. 2005; 46: 1493
    • 4b Familonni OB, Klaas PJ, Lobb KA, Pakade VE, Kaye PT. Org. Biomol. Chem. 2006; 4: 3960
    • 4c Pathak R, Madapa S, Batra S. Tetrahedron 2007; 63: 451
    • 5a Okuro K, Kai H, Alper H. Tetrahedron: Asymmetry 1997; 8: 2307
    • 5b Fujita K.-i, Takahashi Y, Owaki M, Yamamoto K, Yamaguchi R. Org. Lett. 2004; 6: 2785
    • 5c Horn J, Li HY, Marsden SP, Nelson A, Shearer RJ, Campbell AJ, House D, Weingarten GG. Tetrahedron 2009; 65: 9002
    • 6a Berrino R, Cacchi S, Fabrizi G, Goggiamani A. J. Org. Chem. 2012; 77: 2881
    • 6b Inamoto K, Kawasaki J, Hiroya K, Kondo Y, Doi T. Chem. Commun. 2012; 48: 4332

      For reviews on transition-metal-catalyzed C–H functionalizations, see:
    • 7a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 7b Chen X, Engle K, Wang D, Yu J. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 7c Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 7d Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 7e Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 7f Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 7g Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 8a Yan R.-L, Luo J, Wang C.-X, Ma C.-W, Huang G.-S, Liang Y.-M. J. Org. Chem. 2010; 75: 5395
    • 8b Zhao M.-N, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Chem. Eur. J. 2014; 20: 1839
    • 8c Liu P, Liu J.-l, Wang H.-s, Pan Y.-m, Liang H, Chen Z.-F. Chem. Commun. 2014; 50: 4795
  • 9 Bernini R, Fabrizi G, Sferrazza A, Cacchi S. Angew. Chem. Int. Ed. 2009; 48: 8078
    • 10a Cheung CW, Buchwald SL. J. Org. Chem. 2012; 77: 7526
    • 10b Xu Z, Zhang C, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 11367
    • 11a Perry A, Taylor RJ. K. Chem. Commun. 2009; 3249
    • 11b Jia Y.-X, Kündig EP. Angew. Chem. Int. Ed. 2009; 48: 1636
    • 12a Neumann JJ, Suri M, Glorius F. Angew. Chem. Int. Ed. 2010; 49: 7790
    • 12b Li X, He L, Chen H, Wu W, Jiang H. J. Org. Chem. 2013; 78: 3636
    • 13a Toh KK, Sanjaya S, Sahnoun S, Chong SY, Chiba S. Org. Lett. 2012; 14: 2290
    • 13b Xia X.-F, Zhang L.-L, Song X.-R, Liu X.-Y, Liang Y.-M. Org. Lett. 2012; 14: 2480
    • 13c Yan R, Liu X, Pan C, Zhou X, Li X, Kang X, Huang G. Org. Lett. 2013; 15: 4876
    • 13d Meyet CE, Larsen CH. J. Org. Chem. 2014; 79: 9835
    • 14a Jiang M.-C, Chuang C.-P. J. Org. Chem. 2000; 65: 5409
    • 14b Wu Y.-L, Chuang C.-P, Lin P.-Y. Tetrahedron 2001; 57: 5543
    • 14c Tseng C.-C, Wu Y.-L, Chuang C.-P. Tetrahedron 2002; 58: 7625
    • 15a Chuang C.-P, Wu Y.-L. Tetrahedron 2004; 60: 1841
    • 15b Tsai A.-I, Chuang C.-P. Tetrahedron 2006; 62: 2235
    • 16a Wu Y.-L, Chuang C.-P, Lin P.-Y. Tetrahedron 2000; 56: 6209
    • 16b Chuang C.-P, Tsai A.-I, Tsai M.-Y. Tetrahedron 2013; 69: 3293
    • 16c Tsai P.-J, Kao C.-B, Chiow W.-R, Chuang C.-P. Synthesis 2014; 46: 175
    • 17a Lin Z.-Y, Chen Y.-L, Lee C.-S, Chuang C.-P. Eur. J. Org. Chem. 2010; 3876
    • 17b Chen K-P, Chen Y.-J, Chuang C.-P. Eur. J. Org. Chem. 2010; 5292

      For similar elimination reactions, see:
    • 18a Lucas HR, Li L, Narducci Sarjeant AA, Vance MA, Solomon EI, Karlin KD. J. Am. Chem. Soc. 2009; 131: 3230
    • 18b Chiba S, Zhang L, Lee J.-Y. J. Am. Chem. Soc. 2010; 132: 7266
    • 18c Wang H, Wang Y, Liang D, Liu L, Zhang J, Zhu Q. Angew. Chem. Int. Ed. 2011; 50: 5678
    • 18d Zhang L, Ang GY, Chiba S. Org. Lett. 2011; 13: 1622
    • 18e Toh KK, Wang Y.-F, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 13942
  • 19 For a review on the addition of metal enolates to C–C unsaturated bonds, see: Dénès F, Pérez-Luna A, Chemla F. Chem. Rev. 2010; 110: 2366
    • 20a Bouyssi D, Monteiro N, Balme G. Tetrahedron Lett. 1999; 40: 1297
    • 20b Yang T, Ferrali A, Sladojevich F, Campbell L, Dixon DJ. J. Am. Chem. Soc. 2009; 131: 9140
    • 20c Xie P, Wang Z.-Q, Deng G.-B, Song R.-J, Xia J.-D, Hu M, Li J.-H. Adv. Synth. Catal. 2013; 355: 2257

      For related fragmentation reactions, see:
    • 21a Wang Z.-Q, Zhang W.-W, Gong L.-B, Tang R.-Y, Yang X.-H, Liu Y, Li J.-H. Angew. Chem. Int. Ed. 2011; 50: 8968
    • 21b Han J, Shen Y, Sun X, Yao Q, Chen J, Deng H, Shao M, Fan B, Zhang H, Cao W. Eur. J. Org. Chem. 2015; 2061
    • 22a Benzaldehyde cannot be obtained in pure form.
    • 22b 4-Methoxybenzaldehyde was also obtained in 59%, 57%, and 51% yield, respectively.
    • 23a Arcadi A, Di Giuseppe S, Marinelli F, Rossi E. Tetrahedron: Asymmetry 2001; 12: 2715
    • 23b Robinson RS, Dovey MC, Gravestock D. Tetrahedron Lett. 2004; 45: 6787
    • 23c Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
    • 23d Abdukader A, Xue Q, Lin A, Zhang M, Cheng Y, Zhu C. Tetrahedron Lett. 2013; 54: 5898
    • 24a Würtz S, Rakshit S, Neumann JJ, Dröge T, Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
    • 24b Kramer S, Dooleweerdt K, Lindhardt AT, Rottländer M, Skrydstrup T. Org. Lett. 2009; 11: 4208
    • 24c Shi Z, Zhang C, Li S, Pan D, Ding S, Cui Y, Jiao N. Angew. Chem. Int. Ed. 2009; 48: 4572
    • 24d Guan Z.-H, Yan Z.-Y, Ren Z.-H, Liu X.-Y, Liang Y.-M. Chem. Commun. 2010; 46: 2823
    • 24e Gao D, Back TG. Chem. Eur. J. 2012; 18: 14828
    • 24f Nguyen HH, Kurth MJ. Org. Lett. 2013; 15: 362
    • 25a Cacchi S, Fabrizi G, Filisti E. Org. Lett. 2008; 10: 2629
    • 25b Li L, Zhao M.-N, Ren Z.-H, Li J.-L, Guan Z.-H. Org. Lett. 2012; 14: 3506
    • 26a Chen Z, Zhu J, Xie H, Li S, Wu Y, Gong Y. Chem. Commun. 2010; 46: 2145
    • 26b Han J, Cao L, Bian L, Chen J, Deng H, Shao M, Jin Z, Zhang H, Cao W. Adv. Synth. Catal. 2013; 355: 1345
    • 27a Joshi AA, Viswanathan CL. Bioorg. Med. Chem. Lett. 2006; 16: 2613
    • 27b Billker O, Lindo V, Panico M, Etiene A, Rogger SM, Sinden RE. Nature 1998; 389: 289
    • 27c Chen YL, Fang KC, Sheu JY, Hsu SL, Tzeng CC. J. Med. Chem. 2001; 44: 2374
    • 27d Kym PR, Kort ME, Coghlan MJ, Moore JL, Tang R, Ratajczyk JD, Larson DP, Elmore SW, Pratt JK, Stashko MA, Falls HD, Lin CW, Nakane M, Miller L, Tyree CM, Miner JN, Jacobson PB, Wilcox DM, Nguyen P, Lane BC. J. Med. Chem. 2003; 46: 1016
    • 27e Chou LC, Tsai MT, Hsu MH, Wang SH, Way TD, Huang CH, Lin HY, Qian K, Dong Y, Lee KH, Huang LJ, Kuo SC. J. Med. Chem. 2010; 53: 8047
    • 27f Dubé D, Blouin M, Brideau C, Chan C.-C, Desmarais S, Ethier D, Falgueyret J.-P, Friesen RW, Girard M, Girard Y, Guay J, Riendeau D, Tagari P, Young RN. Bioorg. Med. Chem. Lett. 1998; 8: 1255
    • 27g Camps P, Gómez E, Muñoz-Torrero D, Badia A, Vivas NM, Barril X, Orozco M, Luque FJ. J. Med. Chem. 2001; 44: 4733
    • 27h Franck X, Fournet A, Prina E, Mahieux R, Hocquemiller R, Figadere B. Bioorg. Med. Chem. Lett. 2004; 14: 3635

      For reviews on quinoline synthesis, see:
    • 28a Cheng C.-C, Yan S.-J. Org. React. 1982; 28: 38
    • 28b Kouznetsov VV, Vargas Méndez LY, Meléndez Gómez CM. Curr. Org. Chem. 2005; 9: 141
    • 28c Madapa S, Tusi Z, Batra S. Curr. Org. Chem. 2009; 12: 1116
    • 28d Marco-Contelles J, Pérez-Mayoral E, Samadi A, do Carmo Carreiras M, Soriano E. Chem. Rev. 2009; 109: 2652