Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(18): 2531-2535
DOI: 10.1055/s-0034-1379214
DOI: 10.1055/s-0034-1379214
synpacts
A New Method for the Synthesis of 1,4-Diols: C(sp3)–H Hydroxylation Induced by Iron-Catalyzed Redox Hydration of Alkenes
Further Information
Publication History
Received: 08 August 2014
Accepted after revision: 04 September 2014
Publication Date:
15 October 2014 (online)
Abstract
A novel method for the synthesis of 1,4-diols from alkenes is presented. The reaction is the basis of iron-catalyzed redox hydration of alkenes. The second hydroxyl group is introduced by hydroxylation of an inert C–H bond. The mechanism includes a radical 1,5-hydrogen-transfer process of an intermediary alkoxy radical. In this paper, we describe how this new method has been discovered and developed.
-
References and Notes
- 1a Smith MB, March J. March’s Advanced Organic Chemistry . Wiley; New York: 2001. 5th ed
- 1b Comprehensive Organic Functional Group Transformations II . Vol. 2. Katritzky AR, Taylor RJ. K. Elsevier; Amsterdam: 2005
- 2a Dong G, Teo P, Wickens ZK, Grubbs RH. Science 2011; 333: 1609
- 2b Li L, Herzon SB. J. Am. Chem. Soc. 2012; 134: 17376
- 2c Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2013; 134: 18577
- 3a Simmons EM, Hartwig JF. Nature (London, UK) 2012; 483: 70
- 3b Gómez L, Canta M, Font D, Prat I, Ribas X, Costas M. J. Org. Chem. 2013; 78: 1421
- 3c Moteki SA, Usui A, Zhang T, Solorio Alvarado CR, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 8657
- 3d Gormisky PE, White MC. J. Am. Chem. Soc. 2013; 135: 14052
- 3e Adams AM, Du Bois J. Chem. Sci. 2014; 5: 656 ; and references cited therein
- 4a Godula K, Sames D. Science 2006; 312: 67
- 4b Baran PS, Ishihara Y. Synlett 2010; 1733
- 4c Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
- 4d White MC. Science 2012; 335: 807
- 4e Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
- 5a Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 5b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 5c Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
- 5d Ackermann L. Chem. Rev. 2011; 111: 1315
- 6 Recupero F, Punta C. Chem. Rev. 2007; 107: 3800
- 7a Zhu Y, Wei Y. Chem. Sci. 2014; 5: 2379
- 7b Fenghua ZL, Yang FJ, Liu Z.-Q. Org. Lett. 2014; 16: 3396
- 9a Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
- 9b Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1961; 83: 4076
- 10a Wolff ME. Chem. Rev. 1963; 63: 55
- 10b Chen K, Richter JM, Baran PS. J. Am. Chem. Soc. 2008; 130: 7247
- 11 Okamoto T, Oka S. J. Org. Chem. 1984; 49: 1589
- 12 Sugimori T, Horike S.-i, Tsumura S, Handa M, Kasuga K. Inorg. Chim. Acta 1998; 283: 275
- 13a Prateeptongkum S, Jovel I, Jackstell R, Vogl N, Weckbecker C, Beller M. Chem. Commun. 2009; 1990
- 13b Leggans EK, Barker TJ, Duncan KK, Boger DL. Org. Lett. 2012; 14: 1428
- 13c Barker TJ, Boger DL. J. Am. Chem. Soc. 2012; 134: 13588
- 13d Lo JC, Yabe Y, Baran PS. J. Am. Chem. Soc. 2014; 136: 1304
- 14a Mukaiyama T, Isayama S, Inoki S, Kato K, Yamada T, Takai T. Chem. Lett. 1989; 449
- 14b Kato K, Yamada T, Takai T, Inoki S, Isayama S. Bull. Chem. Soc. Jpn. 1990; 63: 179
- 14c Waser J, Gaspar B, Nambu H, Carreira EM. J. Am. Chem. Soc. 2006; 128: 11693
- 14d Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4519
- 15a Taniguchi T, Goto N, Nishibata A, Ishibashi H. Org. Lett. 2010; 12: 112
- 15b Taniguchi T, Goto N, Nishibata A, Ishibashi H. Org. Lett. 2010; 12: 5084
- 16 Unpublished data.
- 17 Hashimoto T, Hirose D, Taniguchi T. Angew. Chem. Int. Ed. 2014; 53: 2730
- 18a Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
- 18b Piera J, Bӓckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
- 18c Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
- 19 An example of an approach to the ideal synthesis using molecular oxygen: Hu X, Maimone TJ. J. Am. Chem. Soc. 2014; 136: 5287
- 20a Nam W, Lim MH, Oh S.-Y, Lee JH, Lee HJ, Woo SK, Kim C, Shin W. Angew. Chem. Int. Ed. 2000; 39: 3646
- 20b Nam W, Lim MH, Oh S.-Y. Inorg. Chem. 2000; 39: 5572
- 20c Nam W, Jin SW, Lim MH, Ryu JY, Kim C. Inorg. Chem. 2002; 41: 3647
- 21a de la Pradilla RF, Colomer I, Ureña M, Viso A. Org. Lett. 2011; 13: 2468
- 21b Tortosa M. Angew. Chem. Int. Ed. 2011; 50: 3950
- 21c Robinson A, Aggarwal VK. Org. Biomol. Chem. 2012; 10: 1795
- 21d Too PC, Tnay YL, Chiba S. Beilstein J. Org. Chem. 2013; 9: 1217
- 21e Ghavtadze N, Melkonyan FS, Gulevich AV, Huang C, Gevorgyan V. Nat. Chem. 2014; 6: 122
- 22 For instance, the cumene process is currently the industrial method to manufacture phenol, though the total yield of phenol is only around 5%: Molinari R, Poerio T. Asia-Pac. J. Chem. Eng. 2010; 5: 191
Recently, anti-Markovnikov hydration and related reactions were reported:
Recent examples:
Review:
A recent application of this reaction:
Representative examples of similar reactions by cobalt catalysis:
For additions and corrections, see: