Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(03): 412-415
DOI: 10.1055/s-0034-1379698
DOI: 10.1055/s-0034-1379698
letter
A Study of Aerobic Photooxidation with a Continuous-Flow Microreactor
Further Information
Publication History
Received: 29 September 2014
Accepted after revision: 12 November 2014
Publication Date:
07 January 2015 (online)
Abstract
We report the development of an aerobic photooxidation process with a continuous-flow microreactor that can form a slug flow region on the chip. The approach solved several problems raised by using batch systems.
-
References and Notes
- 1 Larock RC. Comprehensive Organic Transformations . Wiley-VCH; New York: 1999. 2nd ed
- 2a Ryland BL, Stahl SS. Angew. Chem. Int. Ed. 2014; 53: 8824
- 2b Niu M, Hou Y, Ren S, Wu W, Marsh KN. Green Chem. 2014; in press; DOI: 10.1039/C4GC01440E
- 2c Lin HY, Fang D, Xing R. RSC Adv. 2014; 4: 51140
- 2d Zhao S, Liu C, Guo Y, Xiao J.-C, Chen Q.-Y. J. Org. Chem. 2014; 79: 8926
- 3a Yamaguchi T, Nobuta T, Tada N, Miura T, Nakayama T, Uno B, Itoh A. Synlett 2014; 25: 1453
- 3b Fujiya A, Kariya A, Nobuta T, Tada N, Miura T, Itoh A. Synlett 2014; 25: 884
- 3c Kariya A, Yamaguchi T, Nobuta T, Tada N, Miura T, Itoh A. RSC Adv. 2014; 4: 13191
- 3d Nobuta T, Fujiya A, Yamaguchi T, Tada N, Miura T, Itoh A. RSC Adv. 2013; 3: 10189
- 3e Yamaguchi T, Nobuta T, Kudo Y, Hirashima S, Tada N, Miura T, Itoh A. Synlett 2013; 24: 607
- 3f Tada N, Ishigami T, Cui L, Ban K, Miura T, Itoh A. Tetrahedron Lett. 2013; 54: 256
- 3g Cui L, Furuhashi S, Tachikawa Y, Tada N, Miura T, Itoh A. Tetrahedron Lett. 2013; 54: 162
- 3h Matsusaki Y, Yamaguchi T, Tada N, Miura T, Itoh A. Synlett 2012; 23: 2059
- 3i Tada N, Cui L, Ishigami T, Ban K, Miura T, Uno B, Itoh A. Green Chem. 2012; 14: 3007
- 3j Tada N, Ikebata Y, Nobuta T, Hirashima S, Miura T, Itoh A. Photochem. Photobiol. Sci. 2012; 11: 616
- 3k Nobuta T, Fujiya A, Tada N, Miura T, Itoh A. Synlett 2012; 23: 2975
- 3l Tada N, Hattori K, Nobuta T, Miura T, Itoh A. Green Chem. 2011; 13: 1669
- 3m Kanai N, Nakayama H, Tada N, Itoh A. Org. Lett. 2010; 12: 1948
- 3n Hirashima S, Nobuta T, Tada N, Miura T, Itoh A. Org. Lett. 2010; 12: 3645
- 4 Shidpour R, Vossoughi M, Simchi AR, Micklich M. Ind. Eng. Chem. Res. 2014; 53: 11973
- 5a Knowles JP, Elliott LD, Booker-Milburn KI. Beilstein J. Org. Chem. 2012; 8: 2025
- 5b Oelgemöller M, Shvydkiv O. Molecules 2011; 16: 7522
- 5c Schepper SC. K, Heynderickx GJ, Martin GB. Chem. Eng. J. 2008; 138: 349
- 5d Coyle EE, Oelgemöller M. Photochem. Photobiol. Sci. 2008; 7: 1313
- 5e Carofiglio T, Donnola P, Maggini M, Rossetto M, Rossi E. Adv. Synth. Catal. 2008; 350: 2815
- 5f Matsushita N, Ohba N, Suzuki T, Ichimura T, Tanibata H, Murata T. Pure Appl. Chem. 2007; 79: 1959
- 5g Meyer S, Tietze D, Rau S, Schäfer B, Kreisel G. J. Photochem. Photobiol., A 2007; 186: 248
- 6a Gross U, Koos P, O’Brien M, Polyzos A, Ley SV. Eur. J. Org. Chem. 2014; 6418
- 6b Nagaki A, Takahashi Y, Yoshida J. Chem. Eur. J. 2014; 20: 7931
- 6c Yao C, Dong Z, Zhao Y, Chen G. AIChE J. 2014; 60: 1132
- 6d Park CP, Maurya RA, Lee JH, Kim D.-P. Lab Chip 2011; 11: 1941
- 7a Bourne RA, Han X, Poliakoff M, George MW. Angew. Chem. Int. Ed. 2009; 48: 5322
- 7b Wootton RC. R, Fortt R, de Mello AJ. Org. Process Res. Dev. 2002; 6: 187
- 8a Kopetzki D, Lévesque F, Seeberger PH. Chem. Eur. J. 2013; 19: 5450
- 8b Lévesque F, Seeberger PH. Angew. Chem. Int. Ed. 2012; 51: 1706
- 9a Sanchis A, Johnson GW, Jensen A. Int. J. Multiphase Flow 2011; 37: 358
- 9b Maurya RA, Park CP, Kim D.-P. Beilstein J. Org. Chem. 2011; 7: 1158
- 9c Ghaini A, Mescher A, Agar DW. Chem. Eng. Sci. 2011; 66: 1168
- 9d Echeverri LF, Acharya S, Rein PW. Int. J. Heat Mass Transfer 2010; 53: 2284
- 9e Kinoshita H, Kaneda S, Fujii T, Oshima M. Lab Chip 2007; 7: 338
- 10 Schepper SC. K, Heynderickx GJ, Martin GB. Chem. Eng. J. 2008; 138: 349
- 11 Typical Procedure with Flow Microreactor: A solution of the substrate (0.3 mmol) and photosensitizer (0.1 equiv) in EtOAc (0.6 mL) was introduced into one of the channels by using a syringe pump. Simultaneously, molecular oxygen (0.1 MPa) was introduced into the second channel from a gas cylinder controlled by a mass flowmeter. Both streams were mixed in the channel of the reactor chip to form a slug flow. Light (375 nm) from an LED array (sum: 11.4 W) was used to irradiate the slug flow from a distance of 1 mm from the chip surface The product was collected in a vial tube and analyzed by 1H NMR spectroscopy.
For recent examples of oxidation with molecular oxygen, see:
For recent main examples, see:
For examples of photochemistry with flow microreactor, see:
For recent examples of gas–liquid reactions with flow microreactor, see: