Synthesis 2015; 47(04): 439-459
DOI: 10.1055/s-0034-1379890
review
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Catalyzed Direct C–H Functionalization under External-Oxidant-Free Conditions

Jiayu Mo
Key Laboratory of Xiamen Marine and Gene Drugs, Institutes of Molecular Medicine and School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molecular Medicine, Ministry of Education, Jimei Ave. 668, Xiamen 361021, P. R. of China   Email: cuixl@hqu.edu.cn
,
Lianhui Wang
Key Laboratory of Xiamen Marine and Gene Drugs, Institutes of Molecular Medicine and School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molecular Medicine, Ministry of Education, Jimei Ave. 668, Xiamen 361021, P. R. of China   Email: cuixl@hqu.edu.cn
,
Yunqi Liu
Key Laboratory of Xiamen Marine and Gene Drugs, Institutes of Molecular Medicine and School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molecular Medicine, Ministry of Education, Jimei Ave. 668, Xiamen 361021, P. R. of China   Email: cuixl@hqu.edu.cn
,
Xiuling Cui*
Key Laboratory of Xiamen Marine and Gene Drugs, Institutes of Molecular Medicine and School of Biomedical Sciences, Huaqiao University & Engineering Research Center of Molecular Medicine, Ministry of Education, Jimei Ave. 668, Xiamen 361021, P. R. of China   Email: cuixl@hqu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 26 September 2014

Accepted after revision: 14 November 2014

Publication Date:
21 January 2015 (online)


Abstract

The use of an ‘internal’ oxidant contained within a directing group has emerged as a practical strategy in metal-catalyzed direct C–H activations in recent years, owing to its being highly sustainable. This review presents the rapid advances of this novel strategy through analyzing and comparing the different types of internal oxidant in transition-metal-catalyzed C–H activation reactions.

1 Introduction

2 The N–O Bond as Internal Oxidant

2.1 The O-Linked Moiety as Leaving Group

2.1.1 N-Oxide

2.1.2 N-Acyloxy

2.1.3 Oxime

2.1.4 N-Methoxy or N-Hydroxy

2.1.5 N-Pivaloyloxy or O-tert-Butyloxycarbonyloxy

2.1.6 Miscellaneous

2.2 The N-Linked Moiety as Leaving Group

3 The N–N Bond as Internal Oxidant

4 The N–S Bond as Internal Oxidant

5 The S–Cl Bond as Internal Oxidant

5 The Si–H Bond as Internal Oxidant

6 Conclusion

 
  • References

    • 1a Chen DY.-K, Youn SW. Chem. Eur. J. 2012; 18: 9452
    • 1b Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 1c McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 2a Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 2b Engle KM, Yu J.-Q. J. Org. Chem. 2013; 78: 8927
    • 2c Mousseau JJ, Charrette AB. Acc. Chem. Res. 2013; 46: 412
    • 2d Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 2e Wang Y, Cheng G, Cui X. Chin. J. Org. Chem. 2012; 32: 2018
    • 2f Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 2g Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 2h Ackermann L. Chem. Rev. 2011; 111: 1315
    • 2i Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 2j Sehnal P, Taylor RJ. K, Fairlamb IJ. S. Chem. Rev. 2010; 110: 824
    • 2k Willis MC. Chem. Rev. 2010; 110: 725
    • 2l Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
    • 2m Thansandote P, Lautens M. Chem. Eur. J. 2009; 15: 5874
    • 2n Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 2o Campeau L.-C, Stuart DR, Fagnou K. Aldrichimica Acta 2007; 40: 35
    • 2p Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 2q Bergman RG. Nature 2007; 446: 391
    • 2r Godula K, Sames D. Science 2006; 312: 67; and references cited therein
    • 3a Patureau FW, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1977

    • For reviews related with internal oxidant, see:
    • 3b Li B, Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
    • 3c Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 3d Zhu C, Wang R, Falck JR. Chem. Asian J. 2012; 7: 1502
    • 3e Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 3f Patureau FW, Wencel-Delord J, Glorius F. Aldrichimica Acta 2012; 45: 31
    • 3g Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 4a Ackermann L, Beck EM, Bouffard J, Daugulis O, Davies HM. L, Dick AR, Bois JD, Fagnou K, Gaunt MJ, Itami K, Larock RC, Lautens M, Li C.-J, Liu G, Mariampillai B, Martins A, Shi F, Vicente R, Wu Y, Xia J.-B, Yoo W.-J, You S.-L, Zalatan DN. Top. Curr. Chem. 2012; 292: 35
    • 4b Kanyiva KS, Nakao Y, Hiyama T. Angew. Chem. Int. Ed. 2007; 46: 8872
    • 4c Cho SH, Hwang SJ, Chang S. J. Am. Chem. Soc. 2008; 130: 9254
  • 5 Wu J, Cui X, Chen L, Jiang G, Wu Y. J. Am. Chem. Soc. 2009; 131: 13888
  • 6 Huang X, Huang J, Du C, Zhang X, Song F, You J. Angew. Chem. Int. Ed. 2013; 52: 12970
  • 7 Tan Y, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 3676
    • 8a Díaz-Requejo MM, Belderrain TR, Nicasio MC, Trofimenko S, Pérez PJ. J. Am. Chem. Soc. 2003; 125: 12078
    • 8b Thu H.-Y, Yu W.-Y, Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
    • 8c Li Z, Capretto DA, Rahaman RO, He C. J. Am. Chem. Soc. 2007; 129: 12058
    • 8d Stokes BJ, Dong H, Leslie BE, Pumphrey AL, Driver TG. J. Am. Chem. Soc. 2007; 129: 7500
    • 8e Chiba S, Hattori G, Narasaka K. Chem. Lett. 2007; 36: 52
    • 9a Tsang WC. P, Zheng N, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 14560
    • 9b Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 9c Inamoto K, Saito T, Katsuno M, Sakamoto T, Hiroya K. Org. Lett. 2007; 9: 2931
    • 9d Yamamoto M, Matsubara S. Chem. Lett. 2007; 36: 172
    • 9e Jordan-Hore JA, Johansson CC. C, Gulias M, Beck EM, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 16184
    • 9f Tsang WC. P, Munday RH, Brasche G, Zheng N, Buchwald SL. J. Org. Chem. 2008; 73: 7603
    • 9g Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
    • 9h Mei T.-S, Wang X, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 10806
  • 10 Too PC, Wang Y.-F, Chiba S. Org. Lett. 2010; 12: 5688
  • 11 Too PC, Chua SH, Wong SH, Chiba S. J. Org. Chem. 2011; 76: 6159
    • 12a Parthasarathy K, Cheng C.-H. J. Org. Chem. 2009; 74: 9359

    • For similar reactions, see:
    • 12b Martin RM, Bergman RG, Ellman JA. J. Org. Chem. 2012; 77: 2501
    • 12c Parthasarathy K, Jeganmohan M, Cheng C.-H. Org. Lett. 2008; 10: 325
    • 13a Zhang X, Chen D, Zhao M, Zhao J, Jia A, Li X. Adv. Synth. Catal. 2011; 353: 719

    • The transformation was also acheived by ruthenium catalysis; for related reports, see:
    • 13b Kornhaaß C, Li J, Ackermann L. J. Org. Chem. 2012; 77: 9190
    • 13c Chinnagolla RK, Pimparkar S, Jeganmohan M. Org. Lett. 2012; 14: 3032
  • 15 Zheng L, Ju J, Bin Y, Hua R. J. Org. Chem. 2012; 77: 5794
  • 16 Rakshit S, Grohmann C, Besset T, Glorius F. J. Am. Chem. Soc. 2011; 133: 2350
  • 17 Li B, Ma J, Wang N, Feng H, Xu S, Wang B. Org. Lett. 2012; 14: 736
  • 18 Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14058
  • 19 Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
  • 20 Li B, Feng H, Xu S, Wang B. Chem. Eur. J. 2011; 17: 12573
    • 21a Ackermann L, Fenner S. Org. Lett. 2011; 13: 6548
    • 21b Kornhaaß C, Kuper C, Ackermann L. Adv. Synth. Catal. 2014; 356: 1619
    • 22a Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449

    • For similar transformations, see:
    • 22b Zhao D, Lied F, Glorius F. Chem. Sci. 2014; 5: 2869
    • 22c Yu D.-G, de Azambuja F, Gensch T, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 9650
    • 22d Shi Z, Boultadakis-Arapinis M, Koester DC, Glorius F. Chem. Commun. 2014; 50: 2650
  • 23 Xu L, Zhu Q, Huang G, Cheng B, Xia Y. J. Org. Chem. 2012; 77: 3017
  • 24 Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
  • 25 Ye B, Cramer N. Science 2012; 338: 504
  • 26 Wang H, Grohmann C, Nimphius C, Glorius F. J. Am. Chem. Soc. 2012; 134: 19592
    • 27a Primas N, Bouillon A, Rault S. Tetrahedron 2010; 66: 8121
    • 27b Tyrrell E, Brookes P. Synthesis 2004; 469
  • 28 Wang H, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 7318
    • 29a Zeni G, Larock RC. Chem. Rev. 2006; 106: 4644
    • 29b Yamauchi M, Morimoto M, Miura T, Murakami M. J. Am. Chem. Soc. 2010; 132: 54
    • 29c Miura T, Yamauchi M, Kosaka A, Murakami M. Angew. Chem. Int. Ed. 2010; 49: 4955
    • 29d Ochi Y, Kurahashi T, Matsubara S. Org. Lett. 2011; 13: 1374
    • 29e Tran DN, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 8181
    • 29f Larock RC, Berrios-Peña NG, Fried CA. J. Org. Chem. 1991; 56: 2651
  • 30 Huckins JR, Bercot EA, Thiel OR, Hwang T.-L, Bio MM. J. Am. Chem. Soc. 2013; 135: 14492
  • 31 Cui S, Zhang Y, Wu Q. Chem. Sci. 2013; 4: 3421
  • 32 Neely JM, Rovis T. J. Am. Chem. Soc. 2013; 135: 66
  • 33 Xu X, Liu Y, Park C.-M. Angew. Chem. Int. Ed. 2012; 51: 9372
  • 34 Ng K.-H, Chan AS. C, Yu W.-Y. J. Am. Chem. Soc. 2010; 132: 12862
    • 35a Feng C, Feng D, Loh T.-P. Org. Lett. 2013; 15: 3670

    • With respect to organic alcohols further C–H functionalization that involve C–H/C–O cleavages, see:
    • 35b Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 169
    • 35c Xu H, Muto K, Yamaguchi J, Zhao C, Itami K, Musaev DG. J. Am. Chem. Soc. 2014; 136: 14834
    • 35d Ackermann L, Fenner S. Chem. Commun. 2011; 47: 430
    • 35e Oi S, Funayama R, Hattori T, Inoue Y. Tetrahedron 2008; 64: 6051
    • 35f Ackermann L, Vicente R, Althammer A. Org. Lett. 2008; 10: 2299
    • 35g So CM, Lau CP, Kwong FY. Chem. Eur. J. 2011; 17: 761
    • 35h Ackermann L, Althammer A, Fenner S. Angew. Chem. Int. Ed. 2009; 48: 201
    • 35i Ackermann L, Althammer A, Born R. Angew. Chem. Int. Ed. 2006; 45: 2619
    • 35j Ackermann L, Pospech J, Potukuchi HK. Org. Lett. 2012; 14: 2146
  • 36 Liu G, Shen Y, Zhou Z, Lu X. Angew. Chem. Int. Ed. 2013; 52: 6033
  • 37 Shen Y, Liu G, Zhou Z, Lu X. Org. Lett. 2013; 15: 3366
  • 38 Li XG, Liu K, Zou G, Liu PN. Adv. Synth. Catal. 2014; 356: 1496
  • 39 Liu B, Song C, Sun C, Zhou S, Zhu J. J. Am. Chem. Soc. 2013; 135: 16625
  • 40 Wang C, Huang Y. Org. Lett. 2013; 15: 5294
  • 41 Zhao D, Shi Z, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 12426
  • 42 Zheng L, Hua R. Chem. Eur. J. 2014; 20: 2352
  • 43 Chuang S.-C, Gandeepan P, Cheng C.-H. Org. Lett. 2013; 15: 5750
  • 44 Zhang Q.-R, Huang J.-R, Zhang W, Dong L. Org. Lett. 2014; 16: 1684
    • 45a Wu Z, Song H, Cui X, Pi C, Du W, Wu Y. Org. Lett. 2013; 15: 1270

    • For a similar example of C–H functionalizations through S–Cl bond cleavage, see:
    • 45b Saidi O, Marafie J, Ledger AE. W, Liu PM, Mahon MF, Kociok-Köhn G, Whittlesey MK, Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
    • 46a Tsukada N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 5022

    • For a similar transformation, see:
    • 46b Cheng C, Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2013; 52: 8984
    • 47a Kuznetsov A, Gevorgyan V. Org. Lett. 2012; 14: 914

    • For a similar transformation, see:
    • 47b Kuznetsov A, Onishi Y, Inamoto Y, Gevorgyan V. Org. Lett. 2013; 15: 2498
  • 48 Ureshino T, Yoshida T, Kuninobu Y, Takai K. J. Am. Chem. Soc. 2010; 132: 14324
  • 49 Kuninobu Y, Yamauchi K, Tamura N, Seiki T, Takai K. Angew. Chem. Int. Ed. 2013; 52: 1520
  • 50 Kuninobu Y, Nakahara T, Takeshima H, Takai K. Org. Lett. 2013; 15: 426