Synthesis 2015; 47(13): 1922-1936
DOI: 10.1055/s-0034-1380192
paper
© Georg Thieme Verlag Stuttgart · New York

Toward a Synthetic Access to Jatropha-5,12-dienes by Ring-Closing Metathesis: Detours and Dead-Ends

Lena Butt
Fakultät Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany   eMail: martin.hiersemann@tu-dortmund.de
,
Christoph Schnabel
Fakultät Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany   eMail: martin.hiersemann@tu-dortmund.de
,
Martin Hiersemann*
Fakultät Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany   eMail: martin.hiersemann@tu-dortmund.de
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 23. Januar 2015

Accepted: 09. März 2015

Publikationsdatum:
13. April 2015 (online)


Abstract

Results from efforts aimed at the synthesis of polyhydroxylated jatropha-5,12-dienes are unveiled. An apparently pre-qualified plot consisting of successive aldol addition and ring-closing metathesis was pursued in order to construct the fully oxidized trans-bicy­clo[10.3.0]pentadecane scaffold of naturally occurring jatrophanoids.

Supporting Information

 
  • References


    • For the first report on the isolation of a jatrophane diterpene from Jatropha gossypiifolia, see:
    • 1a Kupchan SM, Sigel CW, Matz MJ, Renauld JA. S, Haltiwanger RC, Bryan RF. J. Am. Chem. Soc. 1970; 92: 4476
    • 1b Kupchan SM, Sigel CW, Matz MJ, Gilmore CJ, Bryan RF. J. Am. Chem. Soc. 1976; 98: 2295

      For the first report on the isolation of a jatrophane diterpene from Euphorbia kansui, see:
    • 2a Uemura D, Hirata Y, Chen Y.-P, Hsu H.-Y. Tetrahedron Lett. 1975; 1697
    • 2b Uemura D, Hirata Y. Tetrahedron Lett. 1975; 1701
    • 2c Uemura D, Katayama C, Uno E, Sasaki K, Hirata Y, Chen Y.-P, Hsu H.-Y. Tetrahedron Lett. 1975; 1703

    • For recent reports, see:
    • 2d Rawal MK, Shokoohinia Y, Chianese G, Zolfaghari B, Appendino G, Taglialatela-Scafati O, Prasad R, Di Pietro A. J. Nat. Prod. 2014; 77: 2700
    • 2e Nothias-Scaglia L.-F, Retailleau P, Paolini J, Pannecouque C, Neyts J, Dumontet V, Roussi F, Leyssen P, Costa J, Litaudon M. J. Nat. Prod. 2014; 77: 1505

      For selected studies, see:
    • 3a Hohmann J, Molnar J, Redei D, Evanics F, Forgo P, Kalman A, Argay G, Szabo P. J. Med. Chem. 2002; 45: 2425
    • 3b Ferreira M.-JU, Gyemant N, Madureira AM, Tanaka M, Koos K, Didziapetris R, Molnar J. Anticancer Res. 2005; 25: 4173
    • 3c Corea G, Fattorusso E, Lanzotti V, Motti R, Simon P.-N, Dumontet C, Di Pietro A. J. Med. Chem. 2004; 47: 988
    • 6a Liu LG, Tan RX. J. Nat. Prod. 2001; 64: 1064
    • 6b Here, the absolute configuration of a jatrophanoid from E. turczaninowii was assigned based on CD measurements and X-ray crystallography.
  • 7 Barile E, Borriello M, Pietro AD, Doreau A, Fattorusso C, Fattorusso E, Lanzotti V. Org. Biomol. Chem. 2008; 6: 1756
  • 15 All attempts to remove the PMB protecting group from either 9 or 10 under oxidative (DDQ) or reductive conditions met with failure. At prolonged reaction times or in the presence of an excess of DDQ in aqueous pH 7 buffer, we observed the formation of the corresponding C15 benzoates from 9 or 10.
  • 17 Treatment of 13 with NaH, TBAI, 4-MeOC6H4CH2Br led to the isolation of optically inactive 15.
  • 18 Nakano M, Kikuchi W, Matsuo J.-i, Mukaiyama T. Chem. Lett. 2001; 30: 424
  • 19 In our hands, application n-BuLi or KHMDS instead of KOt-Bu led to no conversion.
  • 20 For an alternative preparation, see: Blakemore PR, Browder CC, Hong J, Lincoln CM, Nagornyy PA, Robarge LA, Wardrop DJ, White JD. J. Org. Chem. 2005; 70: 5449
  • 21 Upon warming, we observed cleavage of the silyl ether at C3.
  • 22 Our attempts to utilize a (c-Hex)2B(OTf)-mediated aldol reaction with the intend to exploit an 1,5-asymmetric induction failed to deliver the desired aldol 19. Instead, we isolated the PMB deprotected ketone 8 in varying amounts. This undesired outcome could be caused by impurities from our preparation and handling of (c-Hex)2B(OTf).
  • 23 Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
  • 24 Grela K, Harutyunyan S, Michrowska A. Angew. Chem. Int. Ed. 2002; 41: 4038
  • 25 Garber SB, Kingsbury JS, Gray BL, Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
  • 27 In an explorative study, the enone 21 was reduced (NaBH4, CeCl3, MeOH) to the corresponding allylic alcohol (86%, 12 mg), which was subsequently converted (TBSOTf, 2,6-lutidine, CH2Cl2) into the corresponding silyl ether (84%, 13 mg). Neither the exposure of the allylic alcohol to 3b (0.2 equiv, toluene, 110 °C, 16 h) or 3c (0.05 equiv, toluene, 110 °C, 6 h) nor of the corresponding silyl ether to 3c (0.1 equiv, toluene, 110 °C, 4 h) yielded the desired RCM product.
  • 28 In an explorative study, the C10 OPMB ether was cleaved (DDQ) to provide the corresponding C10 allylic alcohol. Exposure of this triene to 3b (0.05 equiv, toluene, 110 °C, 3 h) only led to the isolation of the substrate (55%).
  • 29 By TLC, we detected a second more polar product spot. This observation fuels our speculation that the mediocre yield results from the undesired cleavage of the PMB ether and the PMP acetal.
  • 30 Attempted MnO2 oxidation led to no conversion.
  • 33 Still WC, Kahn M, Mitra A. J. Org. Chem. 1978; 43: 2923
  • 34 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512