Synlett, Table of Contents Synlett 2015; 26(11): 1486-1489DOI: 10.1055/s-0034-1380716 letter © Georg Thieme Verlag Stuttgart · New York C3-Symmetric Pyridine and Bipyridine Derivatives: Simple Preparation by Cyclocondensation and 2D Self-Assembly at a Solution–Graphite Interface Jyotirmayee Dash a Freie Universität Berlin, Institut für Chemie und Biochemie, Takustr. 3, 14195 Berlin, Germany b Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India , Daniel Trawny a Freie Universität Berlin, Institut für Chemie und Biochemie, Takustr. 3, 14195 Berlin, Germany , Jürgen P. Rabe c Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany Email: hans.reissig@chemie.fu-berlin.de , Hans-Ulrich Reissig* a Freie Universität Berlin, Institut für Chemie und Biochemie, Takustr. 3, 14195 Berlin, Germany › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Dedicated to Prof. K. Peter C. Vollhardt Abstract The efficient preparation of four C3-symmetric (star-shaped) pyridine and bipyridine derivatives is reported. The key steps are Suzuki couplings of 4-pyridyl nonaflates with 4-acetyl-phenylboronic acid followed by an acid-promoted cyclocondensation reaction converting the methyl ketone moiety into the central benzene ring of the target compounds. Based on STM studies at a graphite–solution interface the two-dimensional arrangements of the compounds are discussed, showing the influence of the pyridine substitution pattern. Key words Key wordsallenes - heterocycles - cyclization - coupling - self-assembly - scanning tunneling microscopy - highly oriented pyrolytic graphite Full Text References References and Notes 1 Current address: University of Oxford, Department of Chemistry, South Parks Road, Oxford, OX1 3TA, UK. 2a Vögtle F. Reizvolle Moleküle in der Organischen Chemie. Teubner; Stuttgart: 1989 2b Ho T.-L. Symmetry . John Wiley and Sons; Hoboken, NJ: 1995 2c Hopf H. Classics in Hydrocarbon Chemistry . Wiley-VCH; Weinheim: 2000 3a Review: Jarosz T, Lapkowski M, Ledwon P. Macromol. Rapid Commun. 2014; 35: 1006 Selected publications: 3b Pei J, Wang J.-L, Cao X.-Y, Zhou X.-H, Zhang W.-B. J. Am. Chem. Soc. 2003; 125: 9944 3c Nicolas Y, Blanchard P, Levillain E, Allain M, Mercier N, Roncali J. Org. Lett. 2004; 6: 273 3d Iglesias B, Cobas A, Pérez D, Guitián E, Vollhardt KP. C. Org. Lett. 2004; 6: 3557 3e Zhang W, Cao X.-Y, Zi H, Pei J. Org. Lett. 2005; 7: 959 3f Liu T.-A, Prabhakar C, Yu J.-Y, Chen C.-H, Huang H.-H, Yang J.-S. Macromolecules 2012; 45: 4529 4a Belser P, von Zelewsky A, Frank M, Seel C, Vögtle F, Cola LD, Barigelletti F, Balzani V. J. Am. Chem. Soc. 1993; 115: 4076 4b Pang J, Marcotte EJ.-P, Seward C, Brown RS, Wang S. Angew. Chem. 2001; 113: 4166 ; Angew. Chem. Int. Ed. 2001, 40, 4042 4c Bauer T, Schlüter AD, Sakamoto J. Synlett 2010; 877 4d Lechel T, Gerhard M, Trawny D, Brusilowskij B, Schefzig L, Zimmer R, Rabe JP, Lentz D, Schalley CA, Reissig H.-U. Chem. Eur. J. 2011; 17: 7480 4e Sakamoto R, Katagiri S, Maeda H, Nishimori Y, Miyashita S, Nishihara H. J. Am. Chem. Soc. 2015; 137: 734 4f Trawny D, Kunz V, Reissig H.-U. Eur. J. Org. Chem. 2014; 6295 4g Sun B, Wang M, Lou Z, Huang M, Xu C, Li X, Chen L.-J, Yu Y, Davis GL, Xu B, Yang H.-B, Li X. J. Am. Chem. Soc. 2015; 137: 1556 4h Georgiades SN, Rizeq N. Synlett 2015; 26: 489 5a Trawny D, Vandromme L, Rabe JP, Reissig H.-U. Eur. J. Org. Chem. 2014; 4985 5b Trawny D, Schlexer P, Steenbergen K, Rabe JP, Paulus B, Reissig H.-U. ChemPhysChem 2015; 16: 949 5c Ciesielski A, Szabelski PJ, Rżysko W, Cadeddu A, Cook TR, Stang PJ, Samorì P. J. Am. Chem. Soc. 2013; 135: 6942 Recent reviews summarizing the versatile chemistry of alkoxyallenes: 6a Brasholz M, Reissig H.-U, Zimmer R. Acc. Chem. Res. 2009; 42: 45 6b Nedolya NA, Tarasova O, Volostnykh OG, Albanov AL, Klyba LV, Trofimov BA. Synthesis 2011; 2192 6c Zimmer R, Reissig H.-U. Chem. Soc. Rev. 2014; 43: 2888 7a Flögel O, Dash J, Brüdgam I, Hartl H, Reissig H.-U. Chem. Eur. J. 2004; 10: 4283 7b Dash J, Lechel T, Reissig H.-U. Org. Lett. 2007; 9: 5541 7c Lechel T, Dash J, Brüdgam I, Reissig H.-U. Eur. J. Org. Chem. 2008; 3647 7d Eidamshaus C, Reissig H.-U. Adv. Synth. Catal. 2009; 351: 1162 7e Lechel T, Dash J, Hommes P, Lentz D, Reissig H.-U. J. Org. Chem. 2010; 75: 726 7f Lechel T, Dash J, Eidamshaus C, Brüdgam I, Lentz D, Reissig H.-U. Org. Biomol. Chem. 2010; 8: 3007 7g Bera MK, Reissig H.-U. Synthesis 2010; 2129 7h Eidamshaus C, Kumar R, Bera MK, Reissig H.-U. Beilstein J. Org. Chem. 2011; 7: 962 7i Bera MK, Hommes P, Reissig H.-U. Chem. Eur. J. 2011; 17: 11838 7j Eidamshaus C, Hommes P, Reissig H.-U. Synlett 2012; 23: 1670 7k Gholap SL, Hommes P, Neuthe K, Reissig H.-U. Org. Lett. 2013; 15: 318 7l Bera MK, Gholap SL, Hommes P, Neuthe K, Trawny D, Rabe JP, Lentz D, Zimmer R, Reissig H.-U. Adv. Synth. Catal. 2013; 355: 3463 7m Bera MK, Dominguez M, Hommes P, Reissig H.-U. Beilstein J. Org. Chem. 2014; 10: 394 7n Review: Lechel T, Reissig H.-U. Pure Appl. Chem. 2010; 82: 1835 For an alternative approach to 4-hydroxypyridines, the corresponding nonaflates and their reactions, see: 8a Dash J, Reissig H.-U. Chem. Eur. J. 2009; 15: 6811 8b Eidamshaus C, Reissig H.-U. Eur. J. Org. Chem. 2011; 6056 8c Eidamshaus C, Triemer T, Reissig H.-U. Synthesis 2011; 3261 8d Hommes P, Jungk P, Reissig H.-U. Synlett 2011; 2311 8e Hommes P, Berlin S, Reissig H.-U. Synthesis 2013; 45: 3288 8f Domínguez M, Reissig H.-U. Synthesis 2014; 46: 1100 8g Hommes P, Fischer C, Lindner C, Zipse H, Reissig H.-U. Angew. Chem. 2014; 126: 7778 ; Angew. Chem. Int. Ed. 2014, 53, 7647 9 For a review about the advantages of alkenyl and aryl nonaflates in transition-metal-catalyzed reactions, see: Högermeier J, Reissig H.-U. Adv. Synth. Catal. 2009; 351: 2747 10a Engler C, Berthold HE. Ber. Dtsch. Chem. Ges. 1874; 7: 1123 10b Elmorsy SS, Pelter A, Smith K, Hursthouse MB, Ando D. Tetrahedron Lett. 1992; 33: 821 10c Yamashiro S, Imafuku K. Synth. Commun. 2003; 33: 2757 10d Zhang W, Cao X.-Y, Zi H, Pei J. Org. Lett. 2005; 7: 959 ; and references therein 10e Ogini FO, Ortin Y, Mahmoudkhani AH, Cozzolino AF, McGlinchey MJ, Vargas-Baca I. J. Organomet. Chem. 2008; 693: 1957 11a Kotha S, Kashinath D, Lahiri K, Sunoj RB. Eur. J. Org. Chem. 2004; 4003 11b Cao X.-Y, Liu XH, Zhou XH, Zhang Y, Jiang Y, Cao Y, Cui Y.-X, Pei J. J. Org. Chem. 2004; 69: 6050 12a Lechel T. Dissertation . Freie Universität Berlin; Berlin: 2009 12b Hommes P. Dissertation . Freie Universität Berlin; Berlin: 2013 13 Due to the branched scaffold and low solubility of compounds 7a–d only 7b could be rigorously purified by chromatography. Thus signals of minor impurities (e.g., tetraethyl orthosilicate) were observed in the NMR spectra of the other products. 14a Rabe JP, Buchholz S. Phys. Rev. Lett. 1991; 66: 2096 14b Palma C.-A, Cecchini M, Samori P. Chem. Soc. Rev. 2012; 41: 3713 15 Lazzaroni R, Calderone A, Bredas JL, Rabe JP. J. Chem. Phys. 1997; 107: 99 16 One may have expected to observe mirror-image domains, however, that was not the case. In the clean images, which we recorded at an overview scan area of 100 × 100 nm2, we typically observed only one domain. This may be due to a preferred 2D crystallization of one configuration, since the two half spaces – the graphite substrate below and the solution above the molecular monolayer – are very different. Since we did not focus on this issue, our statistics cannot rule out completely some finite probability for mirror-image domains. 17 We expect order-disorder transitions to occur at elevated temperatures, but their study goes beyond the scope of the present work.Typical and Representative Experimental Procedures Typical Procedure A for Suzuki Coupling Reactions To a degassed solution of the corresponding nonaflate 5 (1 equiv), 4-acetylphenyl boronic acid (1.2 equiv), and K2CO3 (1.0 equiv) in DMF (5 mL/mmol) were added Pd(OAc)2 (5 mol%) and Ph3P (20 mol%). The resulting mixture was heated to 70 °C for 8 h. After cooling to room temperature and addition of water, the mixture was extracted with diethyl ether. The combined organic layers were washed with water and brine, dried with Na2SO4, filtered, and concentrated to dryness. The residue was purified by chromatography on silica gel (hexanes–ethyl acetate) to give the desired Suzuki coupling product 6. Typical Procedure B for Cyclocondensation Reactions To a stirred solution of the aryl methyl ketone derivative 6 in ethanol–toluene mixture (5:1, 6 mL) was added SiCl4 (1.5 or 15 equiv) at 0 °C. After complete addition, the mixture was allowed to warm to room temperature and was then heated to 55 °C for 16 h. After cooling to room temperature sat. aq NH4Cl solution and CH2Cl2 were added, the phases were separated, and the aqueous phase was extracted with CH2Cl2 and washed with brine. The combined organic layers were dried with Na2SO4 and concentrated to dryness to give product 7. Preparation of 1-{4-[3-Methoxy-2-octyl-6-(trifluoromethyl)pyridin-4-yl]phenyl}ethanone (6b) According to general procedure A, nonaflate 5b (587 mg, 1.00 mmol), 4-acetylphenyl boronic acid (197 mg, 1.20 mmol), K2CO3 (135 mg, 1.00 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), and Ph3P (52 mg, 0.20 mmol) in DMF (5 mL) gave compound 6b (330 mg, 81%) as viscous oil after purification on silica gel (hexanes–ethyl acetate = 5:1). 1H NMR (500 MHz, CDCl3): δ = 0.86 (t, J = 7.1 Hz, 3 H, Me), 1.24–1.36 (m, 8 H, CH2), 1.72–1.77 (m, 2 H, CH2), 2.64 (s, 3 H, Me), 2.91 (mc, 2 H, CH2), 3.42 (s, 3 H, OMe), 7.48 (s, 1 H, Py), 7.71 (d*, J = 8.4 Hz, 2 H, Ar), 8.05 (d*, J = 8.4 Hz, 2 H, Ar) ppm; * only the largest coupling constant of the AA′XX′ system is given. 13C NMR (125.8 MHz, CDCl3): δ = 14.1, 22.7, 26.7, 29.0, 29.3, 29.5, 29.7, 31.9, 32.7 (Me, CH2), 61.0 (OMe), 119.9 (Ar), 121.6 (q, 1 J CF = 273.5 Hz, CF3), 128.8, 129.0, 137.3, 140.1, 140.9 (Ar), 142.9 (q, 2 J CF = 34.6 Hz, C-6), 153.7, 159.1 (Ar), 197.5 (C=O) ppm. IR (neat): ν = 3000 (=C–H), 2950–2860 (C–H), 1690, 1600 (C=C), 1460, 1370 cm–1. HRMS (80 eV): m/z calcd for C23H28F3NO2: 407.2067; found: 407.2063. Preparation of Compound 7b According to general procedure B, aryl methyl ketone 6b (106 mg, 0.26 mmol) and SiCl4 (0.45 mL, 3.90 mmol) gave compound 7b (72 mg, 71%) as yellow wax after purification on silica gel (hexanes–ethyl acetate = 3:1). 1H NMR (500 MHz, CDCl3): δ = 0.89 (t, J = 6.9 Hz, 9 H, Me), 1.22–1.50 (m, 30 H, CH2), 1.77–1.83 (m, 6 H, CH2), 2.91 (mc, 6 H, CH2), 3.53 (s, 9 H, OMe), 7.57 (s, 3 H, Ar), 7.78 (d*, J = 8.4 Hz, 6 H, Ar), 7.87 (d*, J = 8.4 Hz, 6 H, Ar), 7.94 (s, 3 H, Ar) ppm; * only the largest coupling constant of the AA′XX′ system is given. 13C NMR (125.8 MHz, CDCl3): δ = 14.2, 22.7, 29.2, 29.3, 29.5, 29.8, 32.0, 32.8 (Me, CH2), 60.9 (OMe), 120.1 (Ar), 121.8 (q, 1 J CF = 273.0 Hz, CF3), 125.6, 127.8, 129.3, 135.0, 141.48, 141.50, 141.8 (Ar), 142.9 (q, 2 J CF = 34.2 Hz, C-6), 153.8, 158.9 (Ar) ppm. IR (neat): ν = 3030 (=C–H), 2950–2855 (C–H), 1600 (C=C), 1540, 1520, 1460 cm–1. HRMS (80 eV): m/z calcd for C69H78F9N3O3: 1167.5894; found: 1167.5894. Supplementary Material Supplementary Material Supporting Information