Subscribe to RSS
DOI: 10.1055/s-0034-1383081
Fokale Knorpelschäden des medialen Gelenkkompartiments: Prädiktoren für die Progression der Kniearthrose
Focal Cartilage Defects within the Medial Knee Compartment. Predictors for Osteoarthritis ProgressionPublication History
Publication Date:
14 October 2014 (online)
Zusammenfassung
Zielsetzung: Ziel dieser Untersuchung war es, die Progredienz der Arthrose (Endstadium mit der Notwendigkeit der Endoprothesenimplantation) bei fokalen Knorpelschäden des medialen Gelenkkompartiments zu ermitteln. Zudem sollten weitere Faktoren, welche die Arthroseinzidenz mitbestimmen und mögliche Prädiktoren hierfür sein können, ermittelt werden. Material und Methode: Bei insgesamt 115 Patienten mit fokalen Knorpelschäden im Bereich des medialen Kniegelenkkompartiments wurde eine Arthroskopie durchgeführt. Im 10-Jahres-Follow-up wurde die Rate der Endoprothesenkonversion bestimmt und Faktoren für die Arthroseprogression ermittelt. Ergebnisse: Bei 35 Patienten (30,4 %) erfolgte im Nachbeobachtungszeitraum eine Konversion zur Endoprothese. Das durchschnittliche endoprothesenfreie Überleben betrug 93,2 Monate (95 %-KI 85,4–109,0). Keinen Einfluss auf die notwendige Konversion hatten Knorpelschäden im Bereich der Patella, im lateralen Gelenkbereich, aber auch nicht Schäden am Femur. Dagegen waren signifikante Faktoren für eine spätere Endoprothesenkonversion höheres Lebensalter, weibliches Geschlecht, Übergewicht oder Adipositas, Ausmaß der Meniskusschädigung, Gelenkspaltverschmälerung. Vor allem fokale Knorpelschäden im Bereich der Tibia, hier assoziiert mit dem Durchmesser der Defekte, bestimmten die Arthroseprogression. Schlussfolgerungen: Fokale Knorpelschäden im Bereich des medialen Gelenksraums führen in einem Drittel der Fälle innerhalb eines 10-Jahres-Zeitraums zu einer starken Arthroseprogredienz, welche die Versorgung mit einer Endoprothese erforderlich macht. Neben allgemeinen Faktoren (weibliches Geschlecht, lange Anamnesedauer) sind vor allem große tibiale Defekte und der begleitende Meniskusschaden dafür verantwortlich. Diese Faktoren sind einerseits bei künftiger Indikationsstellung zu beachten, andererseits sollte in Zukunft der tibiale Knorpelschaden, aber auch der Meniskusverlust mehr Beachtung finden.
Abstract
Aim: The aim of this study was to evaluate the progression of osteoarthritis (end-stage disease with a requirement for arthroplasty) in patients with focal cartilage defects of the medial knee compartment.
Material and Methods: Patients (n = 115) with focal cartilage lesions of the medial knee compartment underwent arthroscopy. The follow-up was performed 10 years after the operation to determine the rate of arthroplasty conversion and to evaluate associated factors. Results: In a total of 35 cases an arthroplasty was needed (30.4 %). The mean survival to arthroplasty was 93.2 (95 % CI 85.4–109.0) months. Cartilage defects within the femur and cartilage lesions within the patella and the lateral did not influence the OA progression. Among the significant risk factors for OA progression were higher patient age, female gender, overweight or obesity and severity of meniscal damage. The most important risk factor was the occurrence and the extent of tibial cartilage defects. Conclusions: In the natural course, about 30 % of patients with focal cartilage defects of the medial knee compartment undergo rapid OA progression (arthroplasty as end-stage of the disease). There are general risk factors (age, female gender and obesity) but also local risk factors. Furthermore, tibial defects and the extent of meniscus loss influence the outcome significantly. These general and local factors should be more carefully estimated or addressed in future clinical and scientific work.
-
Literatur
- 1 Spahn G, Schiele R, Hofmann GO et al. [The prevalence of radiological osteoarthritis in relation to age, gender, birth-year cohort, and ethnic origins]. Z Orthop Unfall 2011; 149: 145-152
- 2 Hempfling H, Bohndorf K, Roemer F. [Acute, traumatic versus chronic cartilage lesions as terms of a medical expertʼs opinion]. Z Orthop Unfall 2008; 146: 381-391
- 3 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16: 494-502
- 4 Spahn G, Schwark B, Bartsch R et al. [The impact of gonarthrosis-associated factors]. Phys Rehab Kur Med 2007; 17: 253-259
- 5 Hofmann GO, Marticke J, Grossstück R et al. Detection and evaluation of initial cartilage pathology in man: A comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 2010; 17: 1-8
- 6 Aroen A, Loken S, Heir S et al. Articular cartilage lesions in 993 consecutive knee arthroscopies 1. Am J Sports Med 2004; 32: 211-215
- 7 Curl WW, Krome J, Gordon ES et al. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13: 456-460
- 8 Hjelle K, Solheim E, Strand T et al. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18: 730-734
- 9 Bae DK, Song SJ, Yoon KH et al. Survival analysis of microfracture in the osteoarthritic knee-minimum 10-year follow-up. Arthroscopy 2013; 29: 244-250
- 10 Ebert JR, Smith A, Edwards PK et al. Factors predictive of outcome 5 years after matrix-induced autologous chondrocyte implantation in the tibiofemoral joint. Am J Sports Med 2013; 41: 1245-1254
- 11 Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 2003; 85 (Suppl. 02) 25-32
- 12 Hangody L, Dobos J, Balo E et al. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med 2010; 38: 1125-1133
- 13 Laprell H, Petersen W. Autologous osteochondral transplantation using the diamond bone-cutting system (DBCS): 6–12 yearsʼ follow-up of 35 patients with osteochondral defects at the knee joint. Arch Orthop Trauma Surg 2001; 121: 248-253
- 14 Ma HL, Hung SC, Wang ST et al. Osteochondral autografts transfer for post-traumatic osteochondral defect of the knee-2 to 5 years follow-up. Injury 2004; 35: 1286-1292
- 15 Marquass B, Mahn T, Engel T et al. [Clinical and radiological mid-term results after autologous osteochondral transplantation under consideration of quality of life]. Z Orthop Unfall 2012; 150: 360-367
- 16 Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res 2001; 391 (Suppl.) S349-S361
- 17 Minas T, Von KA, Bryant T et al. The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 2014; 472: 41-51
- 18 Nakamae A, Engebretsen L, Peterson L. Autologous chondrocyte transplantation for the treatment of massive cartilage lesion of the distal tibia: a case report with 8-year follow-up. Knee Surg Sports Traumatol Arthrosc 2007; 15: 1469-1472
- 19 Pelissier A, Boyer P, Boussetta Y et al. Satisfactory long-term MRI after autologous chondrocyte implantation at the knee. Knee Surg Sports Traumatol Arthrosc 2014; 22: 2007-2012
- 20 Solheim E, Oyen J, Hegna J et al. Microfracture treatment of single or multiple articular cartilage defects of the knee: a 5-year median follow-up of 110 patients. Knee Surg Sports Traumatol Arthrosc 2010; 18: 504-508
- 21 Stone KR, Walgenbach AW, Freyer A et al. Articular cartilage paste grafting to full-thickness articular cartilage knee joint lesions: a 2- to 12-year follow-up. Arthroscopy 2006; 22: 291-299
- 22 Outerbridge RE. Further studies on the etiology of chondromalacia patellae. J Bone Joint Surg Br 1964; 46: 179-190
- 23 Widuchowski W, Widuchowski J, Faltus R et al. Long-term clinical and radiological assessment of untreated severe cartilage damage in the knee: a natural history study. Scand J Med Sci Sports 2011; 21: 106-110
- 24 Raynauld JP, Martel-Pelletier J, Berthiaume MJ et al. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Ann Rheum Dis 2008; 67: 683-688
- 25 Davies-Tuck ML, Wluka AE, Wang Y et al. The natural history of cartilage defects in people with knee osteoarthritis. Osteoarthritis Cartilage 2008; 16: 337-342
- 26 Ding C, Cicuttini F, Scott F et al. Natural history of knee cartilage defects and factors affecting change. Arch Intern Med 2006; 166: 651-658
- 27 Carnes J, Stannus O, Cicuttini F et al. Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years. Osteoarthritis Cartilage 2012; 20: 1541-1547
- 28 Ding C, Cicuttini F, Scott F et al. Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis 2005; 64: 549-555
- 29 Cicuttini F, Ding C, Wluka A et al. Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum 2005; 52: 2033-2039
- 30 Allaire R, Muriuki M, Gilbertson L et al. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am 2008; 90: 1922-1931
- 31 Ciccotti MC, Kraeutler MJ, Austin LS et al. The prevalence of articular cartilage changes in the knee joint in patients undergoing arthroscopy for meniscal pathology. Arthroscopy 2012; 28: 1437-1444
- 32 Wluka AE, Forbes A, Wang Y et al. Knee cartilage loss in symptomatic knee osteoarthritis over 4.5 years. Arthritis Res Ther 2006; 8: R90
- 33 Cicuttini FM, Wluka AE, Wang Y et al. Longitudinal study of changes in tibial and femoral cartilage in knee osteoarthritis. Arthritis Rheum 2004; 50: 94-97
- 34 Cicuttini FM, Jones G, Forbes A et al. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis 2004; 63: 1124-1127
- 35 Bae DK, Song SJ, Yoon KH et al. Survival analysis of microfracture in the osteoarthritic knee-minimum 10-year follow-up. Arthroscopy 2013; 29: 244-250
- 36 Stone KR, Walgenbach AW, Freyer A et al. Articular cartilage paste grafting to full-thickness articular cartilage knee joint lesions: a 2- to 12-year follow-up. Arthroscopy 2006; 22: 291-299
- 37 Filardo G, Kon E, Perdisa F et al. Osteochondral scaffold reconstruction for complex knee lesions: a comparative evaluation. Knee 2013; 20: 570-576
- 38 Johnson MR, LaPrade RF. Tibial plateu “Kissing Lesion” from a proud osteochondral autograft. Am J Orthop (Belle Mead NJ) 2011; 40: 359-361
- 39 Matsusue Y, Kotake T, Nakagawa Y et al. Arthroscopic osteochondral autograft transplantation for chondral lesion of the tibial plateau of the knee. Arthroscopy 2001; 17: 653-659
- 40 Maus U, Schneider U, Gravius S et al. [Clinical results after three years use of matrix-associated ACT for the treatment of osteochondral defects of the knee]. Z Orthop Unfall 2008; 146: 31-37
- 41 Ronga M, Grassi FA, Bulgheroni P. Arthroscopic autologous chondrocyte implantation for the treatment of a chondral defect in the tibial plateau of the knee. Arthroscopy 2004; 20: 79-84
- 42 Solheim E, Oyen J, Hegna J et al. Microfracture treatment of single or multiple articular cartilage defects of the knee: a 5-year median follow-up of 110 patients. Knee Surg Sports Traumatol Arthrosc 2010; 18: 504-508