Klin Monbl Augenheilkd 2015; 232(3): 295-302
DOI: 10.1055/s-0034-1383142
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Grundlegende In-vitro-Untersuchungen zur VEGF-Inhibition mit Aflibercept: Gemeinsamkeiten und Unterschiede zu anderen VEGF-bindenden therapeutischen Proteinen

Basic in vitro Studies on VEGF Inhibition with Aflibercept: Similarities and Differences to Other VEGF-Binding Therapeutic Proteins
G. E. Lang
1   Augenklinik, Universitätsklinikum Ulm
,
G. K. Lang
1   Augenklinik, Universitätsklinikum Ulm
,
H. L. Deissler
2   Augenklinik-Forschungslabor, Universitätsklinikum Ulm
› Author Affiliations
Further Information

Publication History

eingereicht 26 August 2014

akzeptiert 07 September 2014

Publication Date:
13 November 2014 (online)

Zusammenfassung

Bei verschiedenen retinalen Erkrankungen kann eine gegen den vaskulären Endothelzell-Wachstumsfaktor (VEGF) gerichtete Therapie deren Verlauf günstig beeinflussen. Neben dem Anti-VEGF-Antikörper Bevacizumab (Avastin) und dem F(ab)-Fragment Ranibizumab (Lucentis) ist mit Aflibercept (Eylea) ein weiteres VEGF-bindendes Protein für die Therapie verfügbar. Die unterschiedliche Struktur und breitere Bindungsspezifität von Aflibercept könnten Konsequenzen für die klinische Anwendung haben, worauf auch grundlegende In-vitro-Untersuchungen und Tierexperimente Hinweise liefern. Obwohl die dominante Rolle des VEGF in pathologischen Prozessen, die mit Neovaskularisierung verbunden sind, außer Frage steht, kann auch der auf retinale Endothelzellen mitogen wirkende Plazentawachstumsfaktor (PlGF) modulierend wirken. Aflibercept kann PlGF ebenfalls hemmen und so möglicherweise in bestimmten Fällen Vorteile bieten. Ob das weitere Bindungsspektrum von Aflibercept und unterschiedliche Bindungsstärken der verschiedenen VEGF-bindenden Proteine tatsächlich in der therapeutischen Praxis zu Unterschieden führen, ist noch unklar. In-vitro-Untersuchungen belegen, dass Aflibercept die durch VEGF hervorgerufene Stimulation retinaler Zellen und Störung ihrer Schrankenfunktion hochwirksam verhindern oder wieder aufheben kann. Dabei zeigte sich allerdings, dass auch Aflibercept von wichtigen retinalen Zelltypen aufgenommen wird und normale Funktionen – Migration von Endothelzellen oder Phagozytose von Pigmentepithelzellen – beeinträchtigen kann. Vermutlich wird die Aufnahme durch die Fc-Antikörperdomäne begünstigt und dementsprechend ähneln sich in dieser Hinsicht Aflibercept und Bevacizumab, während von Ranibizumab nur geringe Mengen internalisiert werden. Die Aufnahme und Speicherung durch okuläre Zellen, die auch in vivo nach intravitrealer Injektion in Affenaugen beobachtet wurde, könnte bisher noch nicht erkannte Nebenwirkungen bei Langzeitanwendung bestimmter VEGF-bindender Proteine zur Folge haben.

Abstract

Patients suffering from various retinal diseases benefit from therapies directed against the vascular endothelial growth factor (VEGF). Aflibercept (Eylea) is another VEGF-binding protein available for intravitreal injection, in addition to the antibody bevacizumab (Avastin) and the F(ab) fragment ranibizumab (Lucentis). Afliberceptʼs distinct structure and broader binding specificity may have clinically relevant consequences, which is supported by basic in vitro studies and observations in animal eyes. All pathological processes involving neovascularisation are driven by the dominant action of VEGF, but other factors including placenta growth factor (PlGF), a mitogenic protein for retinal endothelial cells, potentially modulate its effects. Aflibercept is an inhibitor of both VEGF and PlGF and therefore may have superior therapeutic effects in some cases. However, whether or not afliberceptʼs broader binding specificity or different affinities for the different VEGF-binding proteins to VEGF result in substantially diverse therapeutic efficiencies has not yet been clarified. In vitro studies confirm that aflibercept efficiently prevents or normalises VEGF-stimulation of retinal cells and disturbance of their barrier function. These experiments also show that aflibercept is taken up by important retinal cell types and affects their normal function, i.e., migration of endothelial cells and phagocytosis of pigment epithelial cells. In accordance with a role of the Fc domains of aflibercept and bevacizumab, substantial amounts of both proteins are internalised, whereas only a small portion of ranibizumab enters the cells. Internalisation and storage by ocular cells, also observed in vivo after intravitreal injection into eyes of monkeys, may result in not yet recognised side effects during long-term treatment of patients with certain VEGF-binding proteins.

 
  • Literatur

  • 1 Lang GE, Lang GK, Deissler HL. [Treatment of diabetic macular oedema with the VEGF inhibitors ranibizumab and bevacizumab: conclusions from basic in vitro studies]. Klin Monatsbl Augenheilkd 2014; 231: 527-534
  • 2 Deissler HL, Deissler H, Lang GE. Inhibition of vascular endothelial growth factor (VEGF) is sufficient to completely restore barrier malfunction induced by growth factors in microvascular retinal endothelial cells. Br J Ophthalmol 2011; 95: 1151-1156
  • 3 Deissler HL, Deissler H, Lang GK et al. VEGF but not PlGF disturbs the barrier of retinal endothelial cells. Exp Eye Res 2013; 115: 162-171
  • 4 Deissler HL, Deissler H, Lang GK et al. Ranibizumab efficiently blocks migration but not proliferation induced by growth factor combinations including VEGF in retinal endothelial cells. Graefes Arch Clin Exp Ophthalmol 2013; 251: 2345-2353
  • 5 Aiello LP, Avery RL, Arrigg PG et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 1480-1487
  • 6 Ozaki H, Yu AY, Della N et al. Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 1999; 40: 182-189
  • 7 Campochiaro PA. Ocular neovascularization. J Mol Med 2013; 91: 311-321
  • 8 Kliffen M, Sharma HS, Mooy CM et al. Increased expression of angiogenic growth factors in age-related maculopathy. Br J Ophthalmol 1997; 81: 154-162
  • 9 Tolentino MJ, Miller JW, Gragoudas ES et al. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch Ophthalmol 1996; 114: 964-970
  • 10 Adamis AP, Shima DT, Tolentino MJ et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 1996; 114: 66-71
  • 11 Mitchell P, Bandello F, Schmidt-Erfurth U et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 2011; 118: 615-625
  • 12 Do DV, Nguyen QD, Boyer D et al. One-year outcomes of the da Vinci Study of VEGF Trap-Eye in eyes with diabetic macular edema. Ophthalmology 2012; 119: 1658-1665
  • 13 Lang GE, Berta A, Eldem BM et al. Two-year safety and efficacy of ranibizumab 0.5 mg in diabetic macular edema: interim analysis of the RESTORE extension study. Ophthalmology 2013; 120: 2004-2012
  • 14 Korobelnik JF, Do DV, Schmidt-Erfurth U et al. Intravitreal Aflibercept for diabetic macular edema. Ophthalmology 2014;
  • 15 Holz FG, Roider J, Ogura Y et al. VEGF Trap-eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the phase III GALILEO study. Br J Ophthalmol 2013; 97: 278-284
  • 16 Pielen A, Feltgen N, Isserstedt C et al. Efficacy and safety of intravitreal therapy in macular edema due to branch and central retinal vein occlusion: a systematic review. PLoS One 2013; 8: e78538
  • 17 Kaiser PK, Blodi BA, Shapiro H et al. Angiographic and optical coherence tomographic results of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology 2007; 114: 1868-1875
  • 18 Brown DM, Michels M, Kaiser PK et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: Two-year results of the ANCHOR study. Ophthalmology 2009; 116: 57-65 e55
  • 19 Presta LG, Chen H, OʼConnor SJ et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997; 57: 4593-4599
  • 20 Ferrara N, Damico L, Shams N et al. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006; 26: 859-870
  • 21 Holash J, Davis S, Papadopoulos N et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 2002; 99: 11393-11398
  • 22 Luo L, Uehara H, Zhang X et al. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. Elife 2013; 2: e00324
  • 23 Economides AN, Carpenter LR, Rudge JS et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nature Med 2003; 9: 47-52
  • 24 Khaliq A, Foreman D, Ahmed A et al. Increased expression of placenta growth factor in proliferative diabetic retinopathy. Lab Invest 1998; 78: 109-116
  • 25 Rakic JM, Lambert V, Devy L et al. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Invest Ophthalmol Vis Sci 2003; 44: 3186-3193
  • 26 Bry M, Kivela R, Leppanen VM et al. Vascular endothelial growth factor-B in physiology and disease. Physiol Rev 2014; 94: 779-794
  • 27 Zhong X, Huang H, Shen J et al. Vascular endothelial growth factor-B gene transfer exacerbates retinal and choroidal neovascularization and vasopermeability without promoting inflammation. Mol Vis 2011; 17: 492-507
  • 28 Rudge JS, Holash J, Hylton D et al. VEGF trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci U S A 2007; 104: 18363-18370
  • 29 Papadopoulos N, Martin J, Ruan Q et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012; 15: 171-185
  • 30 Wang X, Yang J. Analysis of the binding affinity of vascular endothelial growth factor A (VEGF) to ranibizumab, aflibercept and bevacizumab. Invest Ophthalmol Vis Sci 2013; 54: 1961
  • 31 Yadav S, Demeule B, Liu J et al. The relative affinities of Ranibizumab and Aflibercept for vascular endothelial growth factor A (VEGF) – an analytical ultracentrifugation study. Invest Ophthalmol Vis Sci 2014; 55: 1942
  • 32 Stewart MW. Pharmacokinetics, pharmacodynamics and pre-clinical characteristics of ophthalmic drugs that bind VEGF. Exp Rev Clin Pharmacol 2014; 7: 167-180
  • 33 Fauser S, Schwabecker V, Muether PS. Suppression of intraocular vascular endothelial growth factor during aflibercept treatment of age-related macular degeneration. Am J Ophthalmol 2014; 158: 532-536
  • 34 Yu L, Liang XH, Ferrara N. Comparing protein VEGF inhibitors: In vitro biological studies. Biochem Biophys Res Commun 2011; 408: 276-281
  • 35 Deissler HL, Lang GK, Lang GE. Capacity of aflibercept to counteract VEGF-stimulated abnormal behavior of retinal microvascular endothelial cells. Exp Eye Res 2014; 122?C: 20-31
  • 36 Deissler H, Deissler H, Lang GK et al. Generation and characterization of iBREC: novel hTERT-immortalized bovine retinal endothelial cells. Int J Mol Med 2005; 16: 65-70
  • 37 Deissler HL, Deissler H, Lang GE. Actions of bevacizumab and ranibizumab on microvascular retinal endothelial cells: similarities and differences. Br J Ophthalmol 2012; 96: 1023-1028
  • 38 Avery RL, Castellarin AA, Steinle NC et al. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br J Ophthalmol 2014;
  • 39 Wang X, Sawada T, Sawada O et al. Serum and plasma vascular endothelial growth factor concentrations before and after intravitreal injection of aflibercept or ranibizumab for age-related macular degeneration. Am J Ophthalmol 2014;
  • 40 Kim H, Fariss RN, Zhang C et al. Mapping of the neonatal Fc receptor in the rodent eye. Invest Ophthalmol Vis Sci 2008; 49: 2025-2029
  • 41 Klettner AK, Kruse ML, Meyer T et al. Different properties of VEGF-antagonists: Bevacizumab but not Ranibizumab accumulates in RPE cells. Graefes Arch Clin Exp Ophthalmol 2009; 247: 1601-1608
  • 42 Klettner A, Mohle F, Roider J. Intracellular bevacizumab reduces phagocytotic uptake in RPE cells. Graefes Arch Clin Exp Ophthalmol 2010; 248: 819-824
  • 43 Klettner A, Tahmaz N, Dithmer M et al. Effects of aflibercept on primary RPE cells: toxicity, wound healing, uptake and phagocytosis. Br J Ophthalmol 2014;
  • 44 Al-Hussaini H, Kam JH, Vugler A et al. Mature retinal pigment epithelium cells are retained in the cell cycle and proliferate in vivo. Mol Vis 2008; 14: 1784-1791
  • 45 Julien S, Biesemeier A, Taubitz T et al. Different effects of intravitreally injected ranibizumab and aflibercept on retinal and choroidal tissues of monkey eyes. Br J Ophthalmol 2014; 98: 813-825
  • 46 Ammar DA, Mandava N, Kahook MY. The effects of aflibercept on the viability and metabolism of ocular cells in vitro. Retina 2013; 33: 1056-1061
  • 47 Schnichels S, Hagemann U, Januschowski K et al. Comparative toxicity and proliferation testing of aflibercept, bevacizumab and ranibizumab on different ocular cells. Br J Ophthalmol 2013; 97: 917-923
  • 48 Malik D, Tarek M, Caceres del Carpio J et al. Safety profiles of anti-VEGF drugs: bevacizumab, ranibizumab, aflibercept and ziv-aflibercept on human retinal pigment epithelium cells in culture. Br J Ophthalmol 2014; 98 (Suppl. 01) i11-i16