Semin Neurol 2014; 34(03): 357-366
DOI: 10.1055/s-0034-1387197
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Congenital Disorders of Glycosylation with Emphasis on Cerebellar Involvement

Rita Barone
1   Department of Pediatrics, Pediatric Neurology, University of Catania, Catania, Italy
,
Agata Fiumara
1   Department of Pediatrics, Pediatric Neurology, University of Catania, Catania, Italy
,
Jaak Jaeken
2   Department of Pediatrics, Center for Metabolic Disease, KULeuven, Leuven, Belgium
› Author Affiliations
Further Information

Publication History

Publication Date:
05 September 2014 (online)

Abstract

Congenital disorders of glycosylation (CDG) are genetic diseases due to defective glycosylation of proteins and lipids. The authors present an update on these disorders affecting the central nervous system with a focus on cerebellar involvement. The rate of identification of novel CDG shows an exponential increase. Some 76 CDG are actually known, not taking into account the defects in glycan-modifying proteins. Neurologic involvement is present in the large majority of CDG. Screening methods are limited to serum transferrin isoelectrofocusing (for N-glycosylation disorders with sialic acid deficiency), and serum apolipoprotein C-III isoelectrofocusing (for core 1 mucin-type O-glycosylation disorders). Whole exome/genome sequencing is increasingly used in the diagnostic workup of patients with CDG-X. Treatment is greatly lagging behind because only one CDG is efficiently treatable (MPI-CDG). Cerebellar involvement is an important feature of PMM2-CDG, the congenital muscular dystrophies due to dystroglycanopathy, and SRD5A3-CDG. It has also been reported in some patients with ALG1-CDG, ALG3-CDG, ALG9-CDG, ALG6-CDG, ALG8-CDG, PIGA-CDG, DPM1-CDG, DPM2-CDG, B4GALT1-CDG, SLC35A2-CDG, COG1-CDG, COG5-CDG, COG7-CDG, and COG8-CDG.

Note

Rita Barone and Agata Fiumara contributed equally to the article.


 
  • References

  • 1 Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 2014; 94 (2) 161-175
  • 2 Krasnewich D. Human glycosylation disorders. Cancer Biomark 2014; 14 (1) 3-16
  • 3 Wolthuis DF, Janssen MC, Cassiman D, Lefeber DJ, Morava E. Defining the phenotype and diagnostic considerations in adults with congenital disorders of N-linked glycosylation. Expert Rev Mol Diagn 2014; 14 (2) 217-224
  • 4 Cylwik B, Naklicki M, Chrostek L, Gruszewska E. Congenital disorders of glycosylation. Part I. Defects of protein N-glycosylation. Acta Biochim Pol 2013; 60 (2) 151-161
  • 5 Funke S, Gardeitchik T, Kouwenberg D , et al. Perinatal and early infantile symptoms in congenital disorders of glycosylation. Am J Med Genet A 2013; 161A (3) 578-584
  • 6 Jaeken J. Congenital disorders of glycosylation. In: Dulac O, Lassonde M, Sarnat HB, , eds. Handbook of Clinical Neurology. Amsterdam: Elsevier; 2013: 1737-1743
  • 7 Matthijs G, Rymen D, Millón MB, Souche E, Race V. Approaches to homozygosity mapping and exome sequencing for the identification of novel types of CDG. Glycoconj J 2013; 30 (1) 67-76
  • 8 Rosnoblet C, Peanne R, Legrand D, Foulquier F. Glycosylation disorders of membrane trafficking. Glycoconj J 2013; 30 (1) 23-31
  • 9 Barone R, Sturiale L, Palmigiano A, Zappia M, Garozzo D. Glycomics of pediatric and adulthood diseases of the central nervous system. J Proteomics 2012; 75 (17) 5123-5139
  • 10 Goreta SS, Dabelic S, Dumic J. Insights into complexity of congenital disorders of glycosylation. Biochem Med (Zagreb) 2012; 22 (2) 156-170
  • 11 Hennet T. Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta 2012; 1820 (9) 1306-1317
  • 12 Woods AG, Woods CW, Snow TM. Congenital disorders of glycosylation. Adv Neonatal Care 2012; 12 (2) 90-95
  • 13 Rymen D, Jaeken J. Skin manifestations in CDG. J Inherit Metab Dis 2014; ; Epub ahead of print
  • 14 Freeze HH, Eklund EA, Ng BG, Patterson MC. Neurology of inherited glycosylation disorders. Lancet Neurol 2012; 11 (5) 453-466
  • 15 Footitt EJ, Karimova A, Burch M , et al. Cardiomyopathy in the congenital disorders of glycosylation (CDG): a case of late presentation and literature review. J Inherit Metab Dis 2009; 32 (Suppl. 01) S313-S319
  • 16 Morava E, Wosik HN, Sykut-Cegielska J , et al. Ophthalmological abnormalities in children with congenital disorders of glycosylation type I. Br J Ophthalmol 2009; 93 (3) 350-354
  • 17 Coman D, Irving M, Kannu P, Jaeken J, Savarirayan R. The skeletal manifestations of the congenital disorders of glycosylation. Clin Genet 2008; 73 (6) 507-515
  • 18 Basmanav FB, Oprisoreanu AM, Pasternack SM , et al. Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease. Am J Hum Genet 2014; 94 (1) 135-143
  • 19 Zhang Y, Yu X, Ichikawa M , et al. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol 2014; 133 (5) 1400-1409 , e1–e5
  • 20 Tegtmeyer LC, Rust S, van Scherpenzeel M , et al. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med 2014; 370 (6) 533-542
  • 21 Timal S, Hoischen A, Lehle L , et al. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. Hum Mol Genet 2012; 21 (19) 4151-4161
  • 22 Pérez B, Medrano C, Ecay MJ , et al. A novel congenital disorder of glycosylation type without central nervous system involvement caused by mutations in the phosphoglucomutase 1 gene. J Inherit Metab Dis 2013; 36 (3) 535-542
  • 23 Mohamed M, Cantagrel V, Al-Gazali L, Wevers RA, Lefeber DJ, Morava E. Normal glycosylation screening does not rule out SRD5A3-CDG. Eur J Hum Genet 2011; 19 (10) 1019
  • 24 Lefeber DJ, Morava E, Jaeken J. How to find and diagnose a CDG due to defective N-glycosylation. J Inherit Metab Dis 2011; 34 (4) 849-852
  • 25 van Scherpenzeel M, Timal S, Rymen D , et al. Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain 2014; 137 (Pt 4) 1030-1038
  • 26 Rymen D, Peanne R, Millón MB , et al. MAN1B1 deficiency: an unexpected CDG-II. PLoS Genet 2013; 9 (12) e1003989
  • 27 de Lonlay P, Seta N. The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. Biochim Biophys Acta 2009; 1792 (9) 841-843
  • 28 Helander A, Jaeken J, Matthijs G, Eggertsen G. Asymptomatic phosphomannose isomerase deficiency (MPI-CDG) initially mistaken for excessive alcohol consumption. Clin Chim Acta 2014; 431: 15-18
  • 29 Bönnemann CG, Wang CH, Quijano-Roy S , et al; Members of International Standard of Care Committee for Congenital Muscular Dystrophies. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014; 24 (4) 289-311
  • 30 Swoboda KJ, Margraf RL, Carey JC , et al. A novel germline PIGA mutation in ferro-cerebro-cutaneous syndrome: a neurodegenerative X-linked epileptic encephalopathy with systemic iron-overload. Am J Med Genet A 2014; 164A (1) 17-28
  • 31 Dauber A, Ercan A, Lee J , et al. Congenital disorder of fucosylation type 2c (LADII) presenting with short stature and developmental delay with minimal adhesion defect. Hum Mol Genet 2014; 23 (11) 2880-2887
  • 32 Ferris SP, Kodali VK, Kaufman RJ. Glycoprotein folding and quality-control mechanisms in protein-folding diseases. Dis Model Mech 2014; 7 (3) 331-341
  • 33 Grünewald S. The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta 2009; 1792 (9) 827-834
  • 34 Drouin-Garraud V, Belgrand M, Grünewald S , et al. Neurological presentation of a congenital disorder of glycosylation CDG-Ia: implications for diagnosis and genetic counseling. Am J Med Genet 2001; 101 (1) 46-49
  • 35 Schoffer KL, O'Sullivan JD, McGill J. Congenital disorder of glycosylation type Ia presenting as early-onset cerebellar ataxia in an adult. Mov Disord 2006; 21 (6) 869-872
  • 36 Vermeer S, Kremer HP, Leijten QH , et al. Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG-Ia) with normal routine CDG screening. J Neurol 2007; 254 (10) 1356-1358
  • 37 Stark KL, Gibson JB, Hertle RW, Brodsky MC. Ocular motor signs in an infant with carbohydrate-deficient glycoprotein syndrome type Ia. Am J Ophthalmol 2000; 130 (4) 533-535
  • 38 Coorg R, Lotze TE. Child Neurology: a case of PMM2-CDG (CDG 1a) presenting with unusual eye movements. Neurology 2012; 79 (15) e131-e133
  • 39 Melberg A, Orlén H, Raininko R , et al. Re-evaluation of the dysequilibrium syndrome. Acta Neurol Scand 2011; 123 (1) 28-33
  • 40 Lecca MR, Wagner U, Patrignani A, Berger EG, Hennet T. Genome-wide analysis of the unfolded protein response in fibroblasts from congenital disorders of glycosylation type-I patients. FASEB J 2005; 19 (2) 240-242
  • 41 Sun L, Zhao Y, Zhou K, Freeze HH, Zhang YW, Xu H. Insufficient ER-stress response causes selective mouse cerebellar granule cell degeneration resembling that seen in congenital disorders of glycosylation. Mol Brain 2013; 6: 52-60
  • 42 Jaeken J, Vanderschueren-Lodeweyckx M, Casaer M , et al. Familial psychomotor retardation with markedly fluctuating serum proteins, FSH and GH levels, partial TBG deficiency, increased serum arylsulphatase A and increased CSF protein: a new syndrome?. Pediatr Res 1980; 14: 179
  • 43 Akaboshi S, Ohno K, Takeshita K. Neuroradiological findings in the carbohydrate-deficient glycoprotein syndrome. Neuroradiology 1995; 37 (6) 491-495
  • 44 Horslen SP, Clayton PT, Harding BN, Hall NA, Keir G, Winchester B. Olivopontocerebellar atrophy of neonatal onset and disialotransferrin developmental deficiency syndrome. Arch Dis Child 1991; 66 (9) 1027-1032
  • 45 Holzbach U, Hanefeld F, Helms G, Hänicke W, Frahm J. Localized proton magnetic resonance spectroscopy of cerebral abnormalities in children with carbohydrate-deficient glycoprotein syndrome. Acta Paediatr 1995; 84 (7) 781-786
  • 46 Pavone L, Fiumara A, Barone R , et al. Olivopontocerebellar atrophy leading to recognition of carbohydrate-deficient glycoprotein syndrome type I. J Neurol 1996; 243 (10) 700-705
  • 47 Miossec-Chauvet E, Mikaeloff Y, Heron D , et al. Neurological presentation in pediatric patients with congenital disorders of glycosylation type Ia. Neuropediatrics 2003; 34 (1) 1-6
  • 48 Coman D, McGill J, MacDonald R , et al. Congenital disorder of glycosylation type 1a: three siblings with a mild neurological phenotype. J Clin Neurosci 2007; 14 (7) 668-672
  • 49 Shanti B, Silink M, Bhattacharya K , et al. Congenital disorder of glycosylation type Ia: heterogeneity in the clinical presentation from multivisceral failure to hyperinsulinaemic hypoglycaemia as leading symptoms in three infants with phosphomannomutase deficiency. J Inherit Metab Dis 2009; 32 (Suppl. 01) S241-S251
  • 50 Antoun H, Villeneuve N, Gelot A, Panisset S, Adamsbaum C. Cerebellar atrophy: an important feature of carbohydrate deficient glycoprotein syndrome type 1. Pediatr Radiol 1999; 29 (3) 194-198
  • 51 Agamanolis DP, Potter JL, Naito HK, Robinson Jr HB, Kulasekaran T. Lipoprotein disorder, cirrhosis, and olivopontocerebellar degeneration in two siblings. Neurology 1986; 36 (5) 674-681
  • 52 Harding BN, Dunger DB, Grant DB, Erdohazi M. Familial olivopontocerebellar atrophy with neonatal onset: a recessively inherited syndrome with systemic and biochemical abnormalities. J Neurol Neurosurg Psychiatry 1988; 51 (3) 385-390
  • 53 Fiumara A, Barone R, Nigro F, Sorge G, Pavone L. Familial Dandy-Walker variant in CDG syndrome. Am J Med Genet 1996; 63 (2) 412-413
  • 54 Barkovich AJ, Millen KJ, Dobyns WB. A developmental classification of malformations of the brainstem. Ann Neurol 2007; 62 (6) 625-639
  • 55 Di Rocco M. On Saraiva and Baraitser and Joubert syndrome: a review. Am J Med Genet 1993; 46 (6) 732-733
  • 56 Morava E, Cser B, Kárteszi J , et al. Screening for CDG type Ia in Joubert syndrome. Med Sci Monit 2004; 10 (8) CR469-CR472
  • 57 Romani M, Micalizzi A, Valente EM. Joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurol 2013; 12 (9) 894-905
  • 58 Feraco P, Mirabelli-Badenier M, Severino M , et al. The shrunken, bright cerebellum: a characteristic MRI finding in congenital disorders of glycosylation type 1a. AJNR Am J Neuroradiol 2012; 33 (11) 2062-2067
  • 59 Poretti A, Wolf NI, Boltshauser E. Differential diagnosis of cerebellar atrophy in childhood. Eur J Paediatr Neurol 2008; 12 (3) 155-167
  • 60 Vedolin L, Gonzalez G, Souza CF, Lourenço C, Barkovich AJ. Inherited cerebellar ataxia in childhood: a pattern-recognition approach using brain MRI. AJNR Am J Neuroradiol 2013; 34 (5) 925-934 , S1–S2
  • 61 Jensen PR, Hansen FJ, Skovby F. Cerebellar hypoplasia in children with the carbohydrate-deficient glycoprotein syndrome. Neuroradiology 1995; 37 (4) 328-330
  • 62 Enns GM, Steiner RD, Buist N , et al. Clinical and molecular features of congenital disorder of glycosylation in patients with type 1 sialotransferrin pattern and diverse ethnic origins. J Pediatr 2002; 141 (5) 695-700
  • 63 Mader I, Döbler-Neumann M, Küker W, Stibler H, Krägeloh-Mann I. Congenital disorder of glycosylation type Ia: benign clinical course in a new genetic variant. Childs Nerv Syst 2002; 18 (1-2) 77-80
  • 64 Kjaergaard S, Schwartz M, Skovby F. Congenital disorder of glycosylation type Ia (CDG-Ia): phenotypic spectrum of the R141H/F119L genotype. Arch Dis Child 2001; 85 (3) 236-239
  • 65 Worthington S, Arbuckle S, Nelson P, Carey W, Lipson A, Fagan E. Carbohydrate deficient glycoprotein syndrome type I: a cause of cerebellar vermis hypoplasia. J Paediatr Child Health 1997; 33 (6) 531-534
  • 66 Aronica E, van Kempen AA, van der Heide M , et al. Congenital disorder of glycosylation type Ia: a clinicopathological report of a newborn infant with cerebellar pathology. Acta Neuropathol 2005; 109 (4) 433-442
  • 67 Strømme P, Maehlen J, Strømme H, Torvik A. Postmortem findings in two patients with the carbohydrate-deficient glycoprotein syndrome. Acta Paediatr Scand 1991; 375: 55-62
  • 68 Pérez-Dueñas B, García-Cazorla A, Pineda M , et al. Long-term evolution of eight Spanish patients with CDG type Ia: typical and atypical manifestations. Eur J Paediatr Neurol 2009; 13 (5) 444-451
  • 69 Mercuri E, Muntoni F. The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol 2012; 72 (1) 9-17
  • 70 Godfrey C, Clement E, Mein R , et al. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 2007; 130 (Pt 10) 2725-2735
  • 71 Lommel M, Winterhalter PR, Willer T , et al. Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion. Proc Natl Acad Sci U S A 2013; 110 (52) 21024-21029
  • 72 Vester-Christensen MB, Halim A, Joshi HJ , et al. Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins. Proc Natl Acad Sci U S A 2013; 110 (52) 21018-21023
  • 73 Cantagrel V, Lefeber DJ, Ng BG , et al. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 2010; 142 (2) 203-217
  • 74 Al-Gazali L, Hertecant J, Algawi K, El Teraifi H, Dattani M. A new autosomal recessive syndrome of ocular colobomas, ichthyosis, brain malformations and endocrine abnormalities in an inbred Emirati family. Am J Med Genet A 2008; 146 (7) 813-819
  • 75 Morava E, Wevers RA, Cantagrel V , et al. A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain 2010; 133 (11) 3210-3220
  • 76 Kahrizi K, Hu CH, Garshasbi M , et al. Next generation sequencing in a family with autosomal recessive Kahrizi syndrome (OMIM 612713) reveals a homozygous frameshift mutation in SRD5A3. Eur J Hum Genet 2011; 19 (1) 115-117
  • 77 Gründahl JE, Guan Z, Rust S , et al. Life with too much polyprenol: polyprenol reductase deficiency. Mol Genet Metab 2012; 105 (4) 642-651
  • 78 Kasapkara CS, Tümer L, Ezgü FS , et al. SRD5A3-CDG: a patient with a novel mutation. Eur J Paediatr Neurol 2012; 16 (5) 554-556
  • 79 Kara B, Ayhan Ö, Gökçay G, Başboğaoğlu N, Tolun A. Adult phenotype and further phenotypic variability in SRD5A3-CDG. BMC Med Genet 2014; 15: 10
  • 80 Dupré T, Vuillaumier-Barrot S, Chantret I , et al. Guanosine diphosphate-mannose:GlcNAc2-PP-dolichol mannosyltransferase deficiency (congenital disorders of glycosylation type Ik): five new patients and seven novel mutations. J Med Genet 2010; 47 (11) 729-735
  • 81 Morava E, Vodopiutz J, Lefeber DJ , et al. Defining the phenotype in congenital disorder of glycosylation due to ALG1 mutations. Pediatrics 2012; 130 (4) e1034-e1039
  • 82 Kranz C, Sun L, Eklund EA, Krasnewich D, Casey JR, Freeze HH. CDG-Id in two siblings with partially different phenotypes. Am J Med Genet A 2007; 143A (13) 1414-1420
  • 83 Rimella-Le-Huu A, Henry H, Kern I , et al. Congenital disorder of glycosylation type Id (CDG Id): phenotypic, biochemical and molecular characterization of a new patient. J Inherit Metab Dis 2008; 31 (Suppl. 02) S381-S386
  • 84 Weinstein M, Schollen E, Matthijs G , et al. CDG-IL: an infant with a novel mutation in the ALG9 gene and additional phenotypic features. Am J Med Genet A 2005; 136 (2) 194-197
  • 85 Dercksen M, Crutchley AC, Honey EM , et al. ALG6-CDG in South Africa: genotype-phenotype description of five novel patients. JIMD Rep 2013; 8: 17-23
  • 86 Ichikawa K, Kadoya M, Wada Y, Okamoto N. Congenital disorder of glycosylation type Ic: report of a Japanese case. Brain Dev 2013; 35 (6) 586-589
  • 87 Vesela K, Honzik T, Hansikova H , et al. A new case of ALG8 deficiency (CDG Ih). J Inherit Metab Dis 2009; 32 (Suppl. 01) 259-264
  • 88 Sorte H, Mørkrid L, Rødningen O , et al. Severe ALG8-CDG (CDG-Ih) associated with homozygosity for two novel missense mutations detected by exome sequencing of candidate genes. Eur J Med Genet 2012; 55 (3) 196-202
  • 89 Johnston JJ, Gropman AL, Sapp JC , et al. The phenotype of a germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal hemoglobinuria. Am J Hum Genet 2012; 90 (2) 295-300
  • 90 Yang AC, Ng BG, Moore SA , et al. Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol Genet Metab 2013; 110 (3) 345-351
  • 91 Kim S, Westphal V, Srikrishna G , et al. Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie). J Clin Invest 2000; 105 (2) 191-198
  • 92 Dancourt J, Vuillaumier-Barrot S, de Baulny HO , et al. A new intronic mutation in the DPM1 gene is associated with a milder form of CDG Ie in two French siblings. Pediatr Res 2006; 59 (6) 835-839
  • 93 Barone R, Aiello C, Race V , et al. DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol 2012; 72 (4) 550-558
  • 94 Peters V, Penzien JM, Reiter G , et al. Congenital disorder of glycosylation IId (CDG-IId) — a new entity: clinical presentation with Dandy-Walker malformation and myopathy. Neuropediatrics 2002; 33 (1) 27-32
  • 95 Ng BG, Buckingham KJ, Raymond K , et al; University of Washington Center for Mendelian Genomics. Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am J Hum Genet 2013; 92 (4) 632-636
  • 96 Kodera H, Nakamura K, Osaka H , et al. De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Hum Mutat 2013; 34 (12) 1708-1714
  • 97 Foulquier F, Vasile E, Schollen E , et al. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci U S A 2006; 103 (10) 3764-3769
  • 98 Zeevaert R, Foulquier F, Dimitrov B , et al. Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. Hum Mol Genet 2009; 18 (3) 517-524
  • 99 Rymen D, Keldermans L, Race V , et al. COG5-CDG: expanding the clinical spectrum. Orphanet J Rare Dis 2012; 7: 94-104
  • 100 Zeevaert R, Foulquier F, Cheillan D , et al. A new mutation in COG7 extends the spectrum of COG subunit deficiencies. Eur J Med Genet 2009; 52 (5) 303-305
  • 101 Foulquier F, Ungar D, Reynders E , et al. A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum Mol Genet 2007; 16 (7) 717-730
  • 102 Boddaert N, Desguerre I, Bahi-Buisson N , et al. Posterior fossa imaging in 158 children with ataxia. J Neuroradiol 2010; 37 (4) 220-230