Subscribe to RSS
DOI: 10.1055/s-0034-1394419
Einfluss von Mars- und Mondstaubanaloga auf die Wundheilung humaner Haut im ex-vivo Modell
Impact of Martian and Lunar Dust Simulants on Cellular Inflammation in Human Skin Wounds ex vivoPublication History
eingereicht 29 June 2014
akzeptiert 23 September 2014
Publication Date:
20 November 2014 (online)
Zusammenfassung
Hintergrund: Im Jahre 2006 veröffentlichte die NASA Pläne für eine bemannte und dauerhafte Mondstation und spätere Missionen zum Mars. Künftige Mond- und Marsmissionen mit wiederholten und episodischen Aufenthalten im All machen daher die Erforschung des Einflusses von Mond- und Marsstaubpartikeln auf Mikroorganismen und menschliche Zellen erforderlich. Ziel dieser Studie war es, den Einfluss von extraterrestrischen Stäuben auf die epitheliale Migration von humanen Keratinozyten und auf die inflammatorische Reaktion von humanen Hautzellen zu untersuchen.
Material und Methoden: 6 mm große Vollhautstücke mit einer 3 mm großen zentralen, epidermalen Wunde wurden entweder mit dem Medium zugesetztem Erdenstaub oder mit Mars- oder Mondstaubsimulanten und zum Vergleich ohne Staub unter Standardbedingungen 4 und 8 Tage kultiviert. Die Gewebe- und Mediumproben wurden histologisch, immunhistochemisch (Ki67, Caspase-3), und biochemisch (Hydroxyprolinanalyse, Zymografie und IL-6, TNF-α and TGF-β ELISA) untersucht.
Ergebnisse: Alle Staube erhöhten proinflammatorisches IL-6 mit einem signifikanten Anstieg in der Mars Gruppe (IL-6: p<0,05; MMP-9: p<0,005), während MMP-2 (p<0,05) im Vergleich zur Kontrollgruppe verringert vorkam. Hinsichtlich des Kollagenmetabolismus, der Reepithelialisierung, zellulären Proliferation und Apoptose gab es keine signifikanten Unterschiede zwischen den Gruppen.
Schlussfolgerung: Hoch oxidativer Marsstaub könnte starke inflammatorische Reaktionen bei Hautkontakt verursachen. Weitere in-vivo Studien werden zeigen, ob ein ausgiebiges chirurgisches Wunddébridement posttraumatische Komplikationen verringern kann.
Abstract
Background: In 2006 NASA published its plans to build a manned lunar station in order to undertake missions to Mars in the future. Thus research projects have been conducted on the influence of Lunar and Martian dust on human health. The present study investigated the effect of Lunar and Martian dust simulants (LDS, MDS) in comparison with earth dust (ED) on viability, migration and inflammatory reaction during wound closure in an ex vivo human skin wound model.
Materials and methods: 6 mm full-thickness skin explants, with a central 3 mm epidermal wound were cultured with LDS, MDS or ED for 4 and 8 days and compared to wound closure without dust exposure. Tissue and conditioned medium were submitted to histological, immunohistochemical (Ki67, Caspase-3) and biochemical analyses (hydroxyproline assay, zymography, IL-6, TNF-α and TGF-β ELISA).
Results: All dusts increased proinflammatory markers with significant increases in MDS-treated samples (IL-6: p<0.05; MMP-9: p<0.005) and reduced MMP-2 (p<0.05) compared to no dust controls over time. No significant differences were found regarding wound closure, proliferation, apoptosis and tissue degradation.
Conclusion: Highly oxidative Martian dust may cause increased cutaneous inflammation. As is currently advocated for wounds contaminated with earth dust, surgical wound debridement should be performed to ensure uncompromised wound healing.
-
Literatur
- 1 Forward KM, Lacks DJ, Sankaran RM. Particle-size dependent bipolar charging of Martian regolith simulant. Geophysical Research Letters 2009; 36: L13201
- 2 Gaier JR. The effect of lunar dust on EVA systems during the Apollo mission. In: National Aeronautics and Space Administration GRC. (ed.) Cleveland, Ohio: NASA; 2005: 1-8
- 3 Khan-Mayberry N. The Lunar environment: Determining the health effects of exposure to moon dusts. Acta Astronautica 2008; 63: 1006-1014
- 4 Holland JM, Simmonds RC. The mammalian response to lunar particulates. Space Life Sci 1973; 4: 97-109
- 5 Wallace WT, Tayler LA, Liu Y et al. Lunar dust and Lunar simulant activation and monitoring. Meteoritics & Planetary Sci 2009; 44: 961-970
- 6 Wagner S. An assessment of dust effects on planetary surface systems to support exploration requirements. In: Center N-LBJS. (ed.) Houston, Texas: NASA; 2004: 1-18
- 7 Latch JN, Hamilton Jr RF, Holian A et al. Toxicity of lunar and martian dust simulants to alveolar macrophages isolated from human volunteers. Inhal Toxicol 2008; 20: 157-165
- 8 Lam CW, James JT, Latch JN et al. Pulmonary toxicity of simulated lunar and Martian dusts in mice: II. Biomarkers of acute responses after intratracheal instillation. Inhal Toxicol 2002; 14: 917-928
- 9 Holian A, Hamilton Jr RF, Morandi MT et al. Urban particle-induced apoptosis and phenotype shifts in human alveolar macrophages. Environ Health Perspect 1998; 106: 127-132
- 10 Rehders M, Grosshäuser BB, Smarandache A et al. Effects of lunar and mars dust simulants on HaCat keratinocytes and CHO-K1 fibroblasts. Advances in Space Research 2011; 47: 1200-1213
- 11 Mirastschijski U, Impola U, Karsdal MA et al. Matrix metalloproteinase inhibitor BB-3103 unlike the serine proteinase inhibitor aprotinin abrogates epidermal healing of human skin wounds ex vivo. The Journal of investigative dermatology 2002; 118: 55-64
- 12 McKay DS, Carter JL, Bole WW et al. JSC-1: A new Lunarsoil simulant, in Engineering, Construction, and Operations in Space IV. Am Soc of Civ Eng 1994; DOI: 857–866.
- 13 Kratz G, Lake M, Gidlund M. Insulin like growth factor-1 and -2 and their role in the re-epithelialisation of wounds; interactions with insulin like growth factor binding protein type 1. Scand J Plast Reconstr Surg Hand Surg 1994; 28: 107-112
- 14 Bentley JP, Hanson AN. The hydroxyproline of elastin. Biochim Biophys Acta 1969; 175: 339-344
- 15 Mirastschijski U, Haaksma CJ, Tomasek JJ et al. Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Exp Cell Res 2004; 299: 465-475
- 16 Fasano G, Franceschini A. A multidimensional version of the Kolmorogov-Smirnov test. Mon Not R Astr Soc 1987; 225: 155-170
- 17 Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. The Journal of investigative dermatology 2007; 127: 514-525
- 18 Lin ZQ, Kondo T, Ishida Y et al. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol 2003; 73: 713-721
- 19 Sato Y, Ohshima T. The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med 2000; 113: 140-145
- 20 Sawamura D, Meng X, Ina S et al. Induction of keratinocyte proliferation and lymphocytic infiltration by in vivo introduction of the IL-6 gene into keratinocytes and possibility of keratinocyte gene therapy for inflammatory skin diseases using IL-6 mutant genes. J Immunol 1998; 161: 5633-5639
- 21 Feiken E, Romer J, Eriksen J et al. Neutrophils express tumor necrosis factor-alpha during mouse skin wound healing. The Journal of investigative dermatology 1995; 105: 120-123
- 22 Mirastschijski U, Johannesson K, Jeppsson B et al. Effect of a matrix metalloproteinase activity and TNF-alpha converting enzyme inhibitor on intra-abdominal adhesions. Eur Surg Res 2005; 37: 68-75
- 23 Abe M, Yokoyama Y, Syuto T et al. Interleukin-6 counteracts effects of cyclosporin A on extracellular matrix metabolism by human dermal fibroblasts. Cell Tissue Res 2008; 333: 281-288
- 24 Mirastschijski U, Impola U, Jahkola T et al. Ectopic localization of matrix metalloproteinase-9 in chronic cutaneous wounds. Human pathology 2002; 33: 355-364
- 25 Pajulo OT, Pulkki KJ, Alanen MS et al. Correlation between interleukin-6 and matrix metalloproteinase-9 in early wound healing in children. Wound Repair Regen 1999; 7: 453-457
- 26 Kusano K, Miyaura C, Inada M et al. Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 1998; 139: 1338-1345
- 27 Wang M, Fudge K, Rhim JS et al. Cytokine regulation of the matrix metalloproteinases and their inhibitors in human papillomavirus-18 transformed human prostatic tumor cell lines. Oncol Res 1996; 8: 303-315
- 28 Luckett-Chastain LR, Gallucci RM. Interleukin (IL)-6 modulates transforming growth factor-beta expression in skin and dermal fibroblasts from IL-6-deficient mice. Br J Dermatol 2009; 161: 237-248
- 29 Verrecchia F, Mauviel A. Transforming growth factor-β and fibrosis. World J Gastroenterol 2007; 13: 3056-3062
- 30 O’Reilly S, Ciechomska M, Cant R et al. Interleukin-6, its role in fibrosing conditions. Cytokine Growth Factor Rev 2012; 23: 99-107