Aktuelle Rheumatologie 2015; 40(02): 124-131
DOI: 10.1055/s-0034-1398670
Übersichtsarbeit
© © Georg Thieme Verlag KG Stuttgart · New York

Die Rolle von IL-1β in der Dermatologie*

The Role of IL-1β in Dermatology
R. U. Reidel
1   Klinik für Dermatologie und Allergologie, Charité – Universitätsmedizin Berlin
,
C. E. Zielinski
1   Klinik für Dermatologie und Allergologie, Charité – Universitätsmedizin Berlin
2   Berlin-Brandenburger Centrum für Regenerative Therapien (BCRT), Charité – Universitätsmedizin Berlin
3   Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München
› Author Affiliations
Further Information

Publication History

Publication Date:
14 April 2015 (online)

Zusammenfassung

Zytokine sind maßgeblich an der Modulation von Immunantworten beteiligt und tragen so entscheidend zur Pathogenese vieler chronisch inflammatorischer Dermatosen bei. Interleukin-1beta (IL-1β) ist das älteste Zytokin und genießt auch viele Jahre nach seiner initialen Entdeckung 1977 sehr große wissenschaftliche und klinische Aufmerksamkeit. Nach der Entdeckung des Inflammasomenkomplexes, der Multiprotein-Maschinerie, die zur Sekretion von bioaktivem IL-1β führt, explodierte die wissenschaftliche Aktivität an diesem Molekül und führte auch zu neuen Immuntherapien im Bereich der autoinflammatorischen Syndrome, die durch Mutationen im Inflammasom und gesteigerte IL-1β-Aktivität gekennzeichnet sind. In dem vorliegenden Übersichtsartikel soll aufgezeigt werden, dass das Spektrum IL-1β-vermittelter Hauterkrankungen die autoinflammatorischen Syndrome weit übersteigt und dass diese Erkrankungen aufgrund ihrer IL-1β-vermittelten Pathogenese bei Versagen konventioneller Therapien ebenfalls von IL-1β-spezifischen Immuntherapien profitieren dürften.

Abstract

Cytokines are crucial for immunomodulation and are involved in the pathogenesis of multiple chronic inflammatory skin diseases. IL-1β is the oldest cytokine but still enjoys a lot of scientific and clinical attention despite its initial identification in 1977. After the discovery of the inflammasome, a multiprotein machinery, which leads to the secretion of bioactive IL-1β, research on this molecule has increased significantly and led to new immunotherapies for autoinflammatory syndromes, which are characterized by mutations in the inflammasome and increased IL-1β activity. In this review article we would like to highlight that the spectrum of IL-1β mediated skin diseases goes far beyond autoinflammatory syndromes. Therefore, several other chronic inflammatory skin diseases that fail to respond to conventional therapies could profit from IL-1β targeting strategies due to the involvement of IL-1β in their pathogenesis.

 
  • Literatur

  • 1 Dinarello CA, Renfer L, Wolff SM. Human leukocytic pyrogen: purification and development of a radioimmunoassay. Proc Natl Acad Sci USA 1977; 74: 4624-4627
  • 2 Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10: 417-426
  • 3 Feldmeyer L, Keller M, Niklaus G et al. The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol 2007; 17: 1140-1145
  • 4 Zielinski CE, Zuberbier T, Maurer M. Immunoregulation in cutaneous allergy: prevention and control. Curr Opin Allergy Clin Immunol 2012; 12: 498-503
  • 5 Dombrowski Y, Peric M, Koglin S et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med 2011; 3: 82ra38
  • 6 Zielinski CE, Mele F, Aschenbrenner D et al. Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 2012; 484: 514-518
  • 7 Asadullah K, Sabat R, Friedrich M et al. Interleukin-10: an important immunoregulatory cytokine with major impact on psoriasis. Curr Drug Targets Inflamm Allergy 2004; 3: 185-192
  • 8 Lowes MA, Kikuchi T, Fuentes-Duculan J et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 2008; 128: 1207-1211
  • 9 Ben-Sasson SZ, Hu-Li J, Quiel J et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci USA 2009; 106: 7119-7124
  • 10 Sallusto F, Zielinski CE, Lanzavecchia A. Human Th17 subsets. Eur J Immunol 2012; 42: 2215-2220
  • 11 Larsen CM, Faulenbach M, Vaag A et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007; 356: 1517-1526
  • 12 Okamura H, Tsutsi H, Komatsu T et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 1995; 378: 88-91
  • 13 Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009; 27: 519-550
  • 14 McDermott MF, Aksentijevich I, Galon J et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999; 97: 133-144
  • 15 Loock J, Lamprecht P, Timmann C et al. Genetic predisposition (NLRP3 V198M mutation) for IL-1-mediated inflammation in a patient with Schnitzler syndrome. J Allergy Clin Immunol 2010; 125: 500-502
  • 16 Pizzirani C, Falzoni S, Govoni M et al. Dysfunctional inflammasome in Schnitzler’s syndrome. Rheumatology (Oxford) 2009; 48: 1304-1308
  • 17 Volz T, Wolbing F, Fischer J et al. Dermal interleukin-1 expression and effective and long-lasting therapy with interleukin-1 receptor antagonist anakinra in Schnitzler syndrome. Acta Derm Venereol 2012; 92: 393-394
  • 18 Schuster C, Kranke B, Aberer E et al. Schnitzler syndrome: response to anakinra in two cases and a review of the literature. Int J Dermatol 2009; 48: 1190-1194
  • 19 de Koning HD, Schalkwijk J, van der Ven-Jongekrijg J et al. Sustained efficacy of the monoclonal anti-interleukin-1 beta antibody canakinumab in a 9-month trial in Schnitzler’s syndrome. Ann Rheum Dis 2013; 72: 1634-1638
  • 20 Krause K, Weller K, Stefaniak R et al. Efficacy and safety of the interleukin-1 antagonist rilonacept in Schnitzler syndrome: an open-label study. Allergy 2012; 67: 943-950
  • 21 Sweet RD. An Acute Febrile Neutrophilic Dermatosis. Br J Dermatol 1964; 76: 349-356
  • 22 Uhara H, Saida T, Nakazawa H et al. Neutrophilic dermatoses with acute myeloid leukemia associated with an increase of serum colonystimulating factor. J Am Acad Dermatol 2008; 59: S10-S12
  • 23 White JM, Mufti GJ, Salisbury JR et al. Cutaneous manifestations of granulocyte colony-stimulating factor. Clin Exp Dermatol 2006; 31: 206-207
  • 24 Codarri L, Gyulveszi G, Tosevski V et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 2011; 12: 560-567
  • 25 Bourke JF, Jones JL, Fletcher A et al. An immunohistochemical study of the dermal infiltrate and epidermal staining for interleukin 1 in 12 cases of Sweet’s syndrome. Br J Dermatol 1996; 134: 705-709
  • 26 Delluc A, Limal N, Puechal X et al. Efficacy of anakinra, an IL1 receptor antagonist, in refractory Sweet syndrome. Ann Rheum Dis 2008; 67: 278-279
  • 27 Kluger N, Gil-Bistes D, Guillot B et al. Efficacy of anti-interleukin-1 receptor antagonist anakinra (Kineret(R)) in a case of refractory Sweet’s syndrome. Dermatology 2011; 222: 123-127
  • 28 Besbas N, Saatci U, Ruacan S et al. The role of cytokines in Henoch Schonlein purpura. Scand J Rheumatol 1997; 26: 456-460
  • 29 Botsios C, Sfriso P, Punzi L et al. Non-complementaemic urticarial vasculitis: successful treatment with the IL-1 receptor antagonist, anakinra. Scand J Rheumatol 2007; 36: 236-237
  • 30 Krause K, Mahamed A, Weller K et al. Efficacy and safety of canakinumab in urticarial vasculitis: an open-label study. J Allergy Clin Immunol 2013; 132: 751-754 e755
  • 31 Nesterovitch AB, Hoffman MD, Simon M et al. Mutations in the PSTPIP1 gene and aberrant splicing variants in patients with pyoderma gangrenosum. Clin Exp Dermatol 2011; 36: 889-895
  • 32 Brenner M, Ruzicka T, Plewig G et al. Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra. Br J Dermatol 2009; 161: 1199-1201
  • 33 van der Zee HH, de Ruiter L, van den Broecke DG et al. Elevated levels of tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-10 in hidradenitis suppurativa skin: a rationale for targeting TNF-alpha and IL-1beta. Br J Dermatol 2011; 164: 1292-1298
  • 34 Grant A, Gonzalez T, Montgomery MO et al. Infliximab therapy for patients with moderate to severe hidradenitis suppurativa: a randomized, double-blind, placebo-controlled crossover trial. J Am Acad Dermatol 2010; 62: 205-217
  • 35 Amano M, Grant A, Kerdel FA. A prospective open-label clinical trial of adalimumab for the treatment of hidradenitis suppurativa. Int J Dermatol 2010; 49: 950-955
  • 36 Leslie KS, Tripathi SV, Nguyen TV et al. An open-label study of anakinra for the treatment of moderate to severe hidradenitis suppurativa. J Am Acad Dermatol 2014; 70: 243-251
  • 37 Coskun M, Bacanli A, Sallakci N et al. Specific interleukin-1 gene polymorphisms in Turkish patients with Behcet’s disease. Exp Dermatol 2005; 14: 124-129
  • 38 Direskeneli H. Behcet’s disease: infectious aetiology, new autoantigens, and HLA-B51. Ann Rheum Dis 2001; 60: 996-1002
  • 39 Bilginer Y, Ayaz NA, Ozen S. Anti-IL-1 treatment for secondary amyloidosis in an adolescent with FMF and Behcet’s disease. Clin Rheumatol 2010; 29: 209-210
  • 40 Gul A, Tugal-Tutkun I, Dinarello CA et al. Interleukin-1beta-regulating antibody XOMA 052 (gevokizumab) in the treatment of acute exacerbations of resistant uveitis of Behcet’s disease: an open-label pilot study. Ann Rheum Dis 2012; 71: 563-566
  • 41 Resende RG, Abreu MH, de Souza LN et al. Association between IL1B (+3954) polymorphisms and IL-1beta levels in blood and saliva, together with acute graft-versus-host disease. J Interferon Cytokine Res 2013; 33: 392-397
  • 42 Jankovic D, Ganesan J, Bscheider M et al. The Nlrp3 inflammasome regulates acute graft-versus-host disease. J Exp Med 2013; 210: 1899-1910
  • 43 Birol A, Kisa U, Kurtipek GS et al. Increased tumor necrosis factor alpha (TNF-alpha) and interleukin 1 alpha (IL1-alpha) levels in the lesional skin of patients with nonsegmental vitiligo. Int J Dermatol 2006; 45: 992-993
  • 44 Kotobuki Y, Tanemura A, Yang L et al. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res 2012; 25: 219-230
  • 45 Alghamdi KM, Khurrum H, Taieb A et al. Treatment of generalized vitiligo with anti-TNF-alpha Agents. J Drugs Dermatol 2012; 11: 534-539
  • 46 Enk AH, Katz SI. Early molecular events in the induction phase of contact sensitivity. Proc Natl Acad Sci USA 1992; 89: 1398-1402
  • 47 Watanabe H, Gaide O, Petrilli V et al. Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J Invest Dermatol 2007; 127: 1956-1963
  • 48 Kish DD, Gorbachev AV, Fairchild RL. IL-1 receptor signaling is required at multiple stages of sensitization and elicitation of the contact hypersensitivity response. J Immunol 2012; 188: 1761-1771
  • 49 Kondo S, Pastore S, Fujisawa H et al. Interleukin-1 receptor antagonist suppresses contact hypersensitivity. J Invest Dermatol 1995; 105: 334-338
  • 50 Dai X, Sayama K, Tohyama M et al. Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes. J Allergy Clin Immunol 2011; 127: 806-814 e801–e804
  • 51 Munoz-Planillo R, Franchi L, Miller LS et al. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol 2009; 183: 3942-3948
  • 52 Jakob T, Neuber K, Ring J. Decreased monocyte interleukin-1 beta production in atopic eczema. Br J Dermatol 1995; 132: 384-390
  • 53 Renne J, Schafer V, Werfel T et al. Interleukin-1 from epithelial cells fosters T cell-dependent skin inflammation. Br J Dermatol 2010; 162: 1198-1205
  • 54 Muhr P, Zeitvogel J, Heitland I et al. Expression of interleukin (IL)-1 family members upon stimulation with IL-17 differs in keratinocytes derived from patients with psoriasis and healthy donors. Br J Dermatol 2011; 165: 189-193
  • 55 Johansen C, Moeller K, Kragballe K et al. The activity of caspase-1 is increased in lesional psoriatic epidermis. J Invest Dermatol 2007; 127: 2857-2864
  • 56 Buerger C, Richter B, Woth K et al. Interleukin-1beta interferes with epidermal homeostasis through induction of insulin resistance: implications for psoriasis pathogenesis. J Invest Dermatol 2012; 132: 2206-2214
  • 57 Bebes A, Kovacs-Solyom F, Prihoda J et al. Interleukin-1 receptors are differentially expressed in normal and psoriatic T cells. Mediators Inflamm 2014; 2014 epub
  • 58 Tarlow JK, Cork MJ, Clay FE et al. Association between interleukin-1 receptor antagonist (IL-1ra) gene polymorphism and early and lateonset psoriasis. Br J Dermatol 1997; 136: 147-148
  • 59 Tamilselvi E, Haripriya D, Hemamalini M et al. Association of disease severity with IL-1 levels in methotrexate-treated psoriasis patients. Scand J Immunol 2013; 78: 545-553
  • 60 Kingsbury SR, Conaghan PG, McDermott MF. The role of the NLRP3 inflammasome in gout. J. Inflamm Res 2011; 4: 39-49
  • 61 McGettrick AF, O’Neill LA. NLRP3 and IL-1beta in macrophages as critical regulators of metabolic diseases. Diabetes Obes Metab 2013; 15: 19-25
  • 62 So A, De Smedt T, Revaz S et al. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 2007; 9: R28
  • 63 Kary S, Burmester GR. Anakinra: the first interleukin-1 inhibitor in the treatment of rheumatoid arthritis. Int J Clin Pract 2003; 57: 231-234