Planta Med 2015; 81(12/13): 1182-1189
DOI: 10.1055/s-0035-1545980
Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Structure-Dependent Deconjugation of Flavonoid Glucuronides by Human β-Glucuronidase – In Vitro and In Silico Analyses[*]

Monika Untergehrer
1   Department of Pharmaceutical Biology, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
,
Daniel Bücherl
1   Department of Pharmaceutical Biology, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
,
Hans-Joachim Wittmann
2   Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
,
Andrea Strasser
2   Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
,
Jörg Heilmann
1   Department of Pharmaceutical Biology, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
,
Guido Jürgenliemk
1   Department of Pharmaceutical Biology, Institute of Pharmacy, University of Regensburg, Regensburg, Germany
› Author Affiliations
Further Information

Publication History

received 13 January 2015
revised 04 March 2015

accepted 28 March 2015

Publication Date:
27 May 2015 (online)

Abstract

Flavonoid glycosides are extensively metabolized to glucuronidated compounds after oral intake. Recently, a cleavage of quercetin glucuronides by β-glucuronidase has been found. To characterize the deglucuronidation reaction and its structural prerequisites among the flavonoid subtypes more precisely, four flavonol glucuronides with varying glucuronidation positions, five flavone 7-O-glucuronides with varying A- and B-ring substitution as well as one flavanone- and one isoflavone-7-O-glucuronide were analyzed in a human monocytic cell line. Investigation of the deglucuronidation rates by HPLC revealed a significant influence of the glucuronidation position on enzyme activity for flavonols. Across the flavonoid subtypes, the C-ring saturation also showed a significant influence on deglucuronidation, whereas A- and B-ring variations within the flavone-7-O-glucuronides did not affect the enzymesʼ activity. Results were compared to computational binding studies on human β-glucuronidase. Additionally, molecular modeling and dynamic studies were performed to obtain detailed insight into the binding and cleavage mode of the substrate at the active site of the human β-glucuronidase.

* Dedicated to Professor Dr. Dr. h. c. mult. Adolf Nahrstedt on the occasion of his 75th birthday.


Supporting Information

 
  • References

  • 1 Beecher GR. Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 2003; 133: 3248S-3254S
  • 2 Craig WJ. Health-promoting properties of common herbs. Am J Clin Nutr 1999; 70: 491S-499S
  • 3 Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J 2013; 2013: 162750
  • 4 Velderrain-Rodriguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen CYO, Robles-Sanchez M, Astiazaran-Garcia H, Alvarez-Parrilla E, Gonzalez-Aguilar GA. Phenolic compounds: their journey after intake. Food Funct 2014; 5: 189-197
  • 5 Kawai Y. β-Glucuronidase activity and mitochondrial dysfunction: the sites where flavonoid glucuronides act as anti-inflammatory agents. J Clin Biochem Nutr 2014; 54: 145-150
  • 6 Williamson G, Barron D, Shimoi K, Terao J. In vitro biological properties of flavonoid conjugates found in vivo . Free Radic Res 2005; 39: 457-469
  • 7 Kim HH, Oh MH, Par KJ, Heo JH, Lee MW. Anti-inflammatory activity of sulfate-containing phenolic compounds isolated from the leaves of Myrica rubra . Fitoterapia 2014; 92: 188-193
  • 8 Jürgenliemk G, Nahrstedt A. Phenolic compounds from Hypericum perforatum . Planta Med 2002; 68: 88-91
  • 9 Ishisaka A, Mukai R, Terao J, Shibata N, Kawai Y. Specific localization of quercetin-3-O-glucuronide in human brain. Arch Biochem Biophys 2014; 557: 11-17
  • 10 de Boer VCJ, Dihal AA, van der Woude H, Arts ICW, Wolffram S, Alink GM, Rietjens IMCM, Keijer J, Hollman PCH. Tissue distribution of quercetin in rats and pigs. J Nutr 2005; 135: 1718-1725
  • 11 Kawai Y, Tanaka H, Murota K, Naito M, Terao J. (−)-Epicatechin gallate accumulates in foamy macrophages in human atherosclerotic aorta: implication in the anti-atherosclerotic actions of tea catechins. Biochem Biophys Res Commun 2008; 374: 527-532
  • 12 Heilmann J, Merfort I. Aktueller Kenntnisstand zum Metabolismus von Flavonoiden – I. Resorption und Metabolismus von Flavonolen. Pharm unserer Zeit 1998; 27: 58-65
  • 13 Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001; 74: 418-425
  • 14 Walle T. Absorption and metabolism of flavonoids. Free Radic Biol Med 2004; 36: 829-837
  • 15 Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP, Rice-Evans CA. The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med 2002; 33: 220-235
  • 16 Day AJ, Bao YP, Morgan MRA, Williamson G. Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic Biol Med 2000; 29: 1234-1243
  • 17 Ishisaka A, Kawabata K, Miki S, Shiba Y, Minekawa S, Nishikawa T, Mukai R, Terao J, Kawai Y. Mitochondrial dysfuntion leads to deconjugation of quercetin glucuronides in inflammatory macrophages. PLoS One 2013; 8: e80843
  • 18 Marshall T, Shult P, Busse WW. Release of lysosomal enzyme beta-glucuronidase from isolated human eosinophils. J Allergy Clin Immunol 1988; 82: 550-555
  • 19 Bartholomé R, Haenen G, Hollman PCH, Bast A, Dagnelie PC, Roos D, Keijer J, Kroon PA, Needs PW, Arts ICW. Deconjugation kinetics of glucuronidated phase II flavonoid metabolites by beta-glucuronidase from neutrophils. Drug Metab Pharmacokinet 2010; 25: 379-387
  • 20 OʼLeary KA, Day AJ, Needs PW, Sly WS, OʼBrien NM, Williamson G. Flavonoid glucuronides are substrates for human liver β-glucuronidase. FEBS Lett 2001; 503: 103-106
  • 21 Li Y, Yang W, Ma Y, Sun J, Shan L, Zhang WD, Yu B. Synthesis of kaempferol 3-O-[2′′,3′′- and 2′′,4′′-di-O-(E)-p-coumaroyl]-α-L-rhamnopyranosides. Synlett 2011; 7: 915-918
  • 22 Bouktaib M, Lebrun S, Atmani A, Rolando C. Hemisynthesis of all the O-monomethylated analogues of quercetin including the major metabolites, through selective protection of phenolic functions. Tetrahedron 2002; 58: 10001-10009
  • 23 Wagner H, Danninger H, Seligmann O, Nogradi M, Farkas L, Farnsworth N. Synthese von Glucuroniden der Flavonoid-Reihe, II. Isolierung von Kämpferol-3-β-D-glucuronid aus Euphorbia esula L. und seine Synthese. Chem Ber 1970; 103: 3678-3683
  • 24 Needs PW, Kroon P. Convenient synthesis of metabolically important quercetin glucuronides and sulfates. Tetrahedron 2006; 62: 6862-6868
  • 25 Picq M, Prigent AF, Némoz G, André AC, Pacheco H. Pentasubstituted quercetin analogues as selective inhibitors of particulate 3′:5′-cyclic-AMP phosphodiesterase from rat brain. J Med Chem 1982; 25: 1192-1198
  • 26 Natoli M, Nicolosi G, Piattelli M. Regioselective alcoholysis of flavonoid acetates with lipase in an organic solvent. J Org Chem 1992; 57: 5776-5778
  • 27 Bouktaib M, Atmani A, Rolando C. Regio- and stereoselective synthesis of the major metabolite of quercetin, quercetin-3-O-β-D-glucuronide. Tetrahedron Lett 2002; 43: 6263-6266
  • 28 Guelcemal D, Alankus-Çalişkan Ö, Karaalp C, Uygar Oers A, Ballar P, Bedir E. Phenolic glycosides with antiproteasomal activity from Centaurea urvillei DC. subsp. urvillei . Carbohydr Res 2010; 345: 2529-2533
  • 29 Maloney DJ, Hecht SM. Synthesis of a potent and selective inhibitor of p 90 Rsk. Org Lett 2005; 7: 1097-1099
  • 30 Shimoi K, Saka N, Nozawa R, Sato M, Amano I, Nakayama T, Kinae N. Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metab Dispos 2001; 29: 1521-1524
  • 31 Dahlén G, Linde A. Screening plate method for detection of bacterial beta-glucuronidase. Appl Microbiol 1973; 26: 863-866
  • 32 Dewick PM. The biosynthesis of shikimate metabolites. Nat Prod Rep 1991; 8: 149-170
  • 33 Hassan MI, Waheed A, Grubb JH, Klei HE, Korolev S, Sly WS. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting. PLoS One 2013; 8: e79687
  • 34 UniProtKB accession codes: human: P08236; bovine: A3KMY8. Available at. http://www.uniprot.org Accessed April 4, 2014
  • 35 Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013; 29: 845-854
  • 36 Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 2004; 25: 1656-1676
  • 37 Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. Interaction models for water in relation to protein hydration. In: Pullman B, editor Intermolecular forces. Dordrecht: Reidel; 1981: 331-342
  • 38 Schüttelkopf AW, van Aalten DMF. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 2004; 60: 1355-1363