Klinische Neurophysiologie 2015; 46(02): 73-78
DOI: 10.1055/s-0035-1548892
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Struktur- und Funktionsdiagnostik der peripheren Muskulatur im Ultraschall

Sonografic Diagnostics of Structure and Function of the Peripheral Muscle System
E. Titianova
1   Neurology Department, University Sofia, Sofia, Bulgaria
,
M. Siebler
2   Neurologie, Fachklinik Mediclin Rhein-Ruhr, Universität Düsseldorf, Essen
› Author Affiliations
Further Information

Publication History

Publication Date:
30 June 2015 (online)

Zusammenfassung

Die nicht-invasive Ultraschalltechnologie erlaubt in Echtzeit Aussagen über die strukturelle und funktionelle Eigenschaften des Muskelgewebes. Seit der Entwicklung der dynamischen Kontraktionsanalysen im Echokardiogramm sind diese Verfahren auch für die Myosonografie interessant geworden und stoßen auf das Interesse der Wissenschaftler und Neurologen. Der Muskelultraschall wurde früh bei Untersuchungen von Sportlern eingesetzt, um Muskelverletzungen wie Blutungen oder Muskelrisse zu erkennen. In der Klinik hat die Myosonologie Einzug gehalten zur Kontrolle der Position von Nadelelektroden im EMG, zur Biopsie oder Injektion von Medikamenten – z. B. Botulinumtoxin oder Lokalanästhetika – und eröffnet damit qualitative Verbesserungen für die Behandlung von Patienten. Durch den Gewebedoppler (Tissue Velocity Imaging -TVI) sind wir in der Lage, das Kontraktionsverhalten peripherer Muskeln zu untersuchen. Die Ultraschallmethode bietet gegenüber dem EMG oder MRT/CT den Vorteil, dass Muskelbewegungen in Bezug auf Kontraktionsgeschwindigkeit und Relaxationsverhalten sowie der Phasenbeziehung zur Aktivierung mit benachbarten Muskeln quantifizierbar werden. Diese Analysen zeigen z. B. bei Schlaganfallpatienten charakteristische Muster. Insgesamt erlaubt die Myosonologie die Beurteilung atrophischer Prozesse, Effekt von pharmakologischen oder physiotherapeutischen Therapien und kann damit ein wertvolles Diagnosetool für Neurologen und Physiotherapeuten werden.

Abstract

By means of ultrasound (US) methods, structural and functional properties of the muscle tissue can be detected in patients in real time and non-invasively. Since dynamic analysis in cardioechography has become established in clinical routine, myosonolgy is moving more and more in the focus of interest of scientists and neurologists. Using high resolution B-mode the physiological and pathological structures of the muscle tissue can be visualised. US of muscles was first used during examinations of athletes to detect muscle injuries like bleeding or disruption after exercise. Even more, the positioning of needle electrodes for biopsy or injections of medications – e. g., botulinum toxins or local anaesthetics – offers new quality improvement for the treatment of patients. Using tissue velocity imaging (TVI), we are now able to investigate the dynamics of movements in identified muscles. The US method provides advantages compared to EMG or MRI/CT, since the muscle motion can be better detected and quantified in terms of velocity and accelerations as well as synchronicity of muscle contraction. This will allow not only the monitoring of muscle tissue volume during processes of atrophy or after exercise, but also for monitoring the effect of medical or physiotherapies on movements, e. g., during rehabilitation or sports. Myosonology may become a powerful tool for neurologists and physiotherapists.

 
  • Literatur

  • 1 Crema MD, Yamada AF, Guermazi A et al. Imaging techniques for muscle injury in sports medicine and clinical relevance. Curr Rev Musculoskelet Med 2015; [Epub ahead of print]
  • 2 Yanagisawa O, Niitsu M, Kurihara T et al. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: A feasibility study. Clin Radiol 2011; 66: 815-819
  • 3 Reimers CD, Schlotter-Weigel B.. Muskelsonografie bei neuromuskulären Erkrankungen. Klin Neurophysiol 2010; 41: 240-252
  • 4 McGaugh J, Ellison J. Intrasession and interrater reliability of rehabilitative ultrasound imaging measures of the deep neck flexors: A pilot study. Physiother Theory Pract 2011; 27: 572-577
  • 5 Bolsterlee B, Veeger HE, van der Helm FC et al. Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images. J Biomech 2015; 21 pii: S0021-S9290(15)
  • 6 Carrillon Y, Cohen M. Imaging findings of muscle traumas in sports medicine. J Radiol 2007; 88: 129-142
  • 7 Philippon MJ, Decker MJ, Giphart JE et al Rehabilitation Exercise Progression for the Gluteus Medius Muscle With Consideration for Iliopsoas Tendinitis: An In Vivo Electromyography Study. Am J Sports Med Am J Sports Med 2011; 39: 1777-852011
  • 8 Blankenbaker DG, Tuite MJ. Temporal changes of muscle injury. Semin Musculoskelet Radiol 2010; 14: 176-193
  • 9 Takebayashi S, Takasawa H, Banzai Y et al. Sonographic findings in muscle strain injury: clinical and MR imaging correlation. J Ultrasound Med 1995; 14: 899-905
  • 10 Witte RS, Kim K, Martin BJ et al. Effect of fatigue on muscle elasticity in the human forearm using ultrasound strain imaging. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 4490-4493
  • 11 Stasinaki AN, Gloumis G, Spengos K et al. Muscle strength, power and morphological adaptations after 6 weeks of compound vs. complex training in healthy men. J Strength Cond Res 2015; [Epub ahead of print]
  • 12 Boon AJ, Oney-Marlow TM, Murthy NS et al. Accuracy of electromyography needle placement in cadavers: Non-guided vs. ultrasound guided. Muscle Nerve 2011; 44: 45-49
  • 13 Hodges PW, Kippers V, Richardson CA. Validation of a technique for accurate fine-wire electrode placement into posterior gluteus medius using real-time ultrasound guidance. Electromyogr Clin Neurophysiol 1997; 37: 39-47
  • 14 Rha DW, Park ES, Jung S et al. Comparison of ultrasound-guided anterior and posterior approaches for needle insertion into the tibialis posterior in hemiplegic children with spastic cerebral palsy. Am J Phys Med Rehabil 2014; 93: 841-848
  • 15 Yang EJ, Rha DW, Yoo JK et al. Accuracy of manual needle placement for gastrocnemius muscle in children with cerebral palsy checked against ultrasonography. Arch Phys Med Rehabil 2009; 90: 741-744
  • 16 Loizides A, Widmann G, Freuis T et al. Optimizing ultrasound-guided biopsy of muscelosceletal masses by application of an ultrasound contrast agent. Ultraschall in Med 2011; 32: 307-310
  • 17 Akkaya T, Ozturk E, Comert A et al. Ultrasound-guided obturator nerve block: a sonoanatomic study of a new methodologic approach. Anesth Analg 2009; 108: 1037-1041
  • 18 Benzon HT, Rodes ME, Chekka K et al. Scalene Muscle Injections for Neurogenic Thoracic Outlet Syndrome: Case Series. Pain Pract 2012; 12: 66-70
  • 19 van Alfen N, Nienhuis M, Zwarts MJ et al. Detection of fibrillations using muscle ultrasound: diagnostic accuracy and identification of pitfalls. Muscle Nerve 2011; 43: 178-182
  • 20 Pillen S, Nienhuis M, van Dijk JP et al. Muscles alive: ultrasound detects fibrillations. Clin Neurophysiol 2009; 120: 932-936
  • 21 Misawa S, Noto Y, Shibuya K et al. Ultrasonographic detection of fasciculations markedly increases diagnostic sensitivity of ALS. Neurology 2011; 77: 1532-1537
  • 22 Costa J, Swash M, de Carvalho M. Awaji criteria for the diagnosis of amyotrophic lateral sclerosis:a systematic review. Arch Neurol 2012; 69: 1410-1416
  • 23 Arts IM, Overeem S, Pillen S et al. Muscle ultrasonography: a diagnostic tool for amyotrophic lateral sclerosis. Clin Neurophysiol 2012; 123: 1662-1667
  • 24 Kadappu KK, Thomas L. Tissue Doppler Imaging in Echocardiography: Value and Limitations. Heart Lung Circ 2015; 24: 224-233
  • 25 Park GY, Kwon DR. Application of Real-Time Sonoelastography in Musculoskeletal Diseases Related to Physical Medicine and Rehabilitation. Ann Rehabil Med 2014; 38: 200-208