J Reconstr Microsurg 2015; 31(07): 508-515
DOI: 10.1055/s-0035-1555114
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

In Situ Deactivation of Interleukin-6 Enhances Early Peripheral Nerve Regeneration in a Murine Injury Model

Georgios Koulaxouzidis
1   Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Freiburg, Germany
,
Gernot Reim
1   Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Freiburg, Germany
,
Joachim W. Fluhr
2   Department of Dermatology and Allergology, Charité–Universitätsmedizin Berlin, Berlin, Germany
,
Filip Simunovic
1   Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Freiburg, Germany
,
G. Bjoern Stark
1   Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Freiburg, Germany
,
Christian Witzel
3   Department of Plastic and Reconstructive Surgery, Interdisciplinary Breast Center, Charité–Universitätsmedizin Berlin, Berlin, Germany
› Author Affiliations
Further Information

Publication History

29 December 2014

25 April 2015

Publication Date:
26 June 2015 (online)

Abstract

Background Systemic alteration of interleukin-6 (IL-6) influences peripheral nerve regeneration. We investigated the potential influences of in situ (at the coaptation site) IL-6 modulation in a peripheral-nerve-transection/sciatic-nerve-graft in vivo model.

Methods We quantified the elongation of regenerating axons, the number of arborizing axons, and the number of branches per arborizing axon 7 days after the injury in mice expressing axonal fluorescent proteins (thy-1-YFP mice). Sciatic nerves from nonexpressing mice (C57Bl6 or IL-6−/− mice) were grafted into those expressing yellow fluorescent protein. We altered the in situ IL-6 concentration by loading a topical gelatin sponge with an inhibiting IL-6 receptor antibody or IL-6 combined with a soluble IL-6 receptor. Sciatic nerves from IL-6−/− mice were grafted into an additional group. The contralateral sham-operated side served as control in all the groups.

Results Axonal elongation increased significantly with the in situ application of the IL-6 receptor antibody, while topical IL-6 significantly reduced the regeneration distance. The number of arborizing axons increased significantly in nerves grafted from IL-6−/− mice, whereas branches per arborizing axons remained stable.

Conclusion In situ IL-6 receptor inhibition and IL-6−/− nerve grafting enhance early peripheral nerve regeneration in an acute murine injury model.

 
  • References

  • 1 Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 1997; 14 (1-2) 67-116
  • 2 Chen ZL, Yu WM, Strickland S. Peripheral regeneration. Annu Rev Neurosci 2007; 30: 209-233
  • 3 Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 2011; 8: 110
  • 4 Brushart TM, Gerber J, Kessens P, Chen YG, Royall RM. Contributions of pathway and neuron to preferential motor reinnervation. J Neurosci 1998; 18 (21) 8674-8681
  • 5 Fox IK, Brenner MJ, Johnson PJ, Hunter DA, Mackinnon SE. Axonal regeneration and motor neuron survival after microsurgical nerve reconstruction. Microsurgery 2012; 32 (7) 552-562
  • 6 Sabongi RG, De Rizzo LA, Fernandes M , et al. Nerve regeneration: is there an alternative to nervous graft?. J Reconstr Microsurg 2014; 30 (9) 607-616
  • 7 Fowler JR, Lavasani M, Huard J, Goitz RJ. Biologic strategies to improve nerve regeneration after peripheral nerve repair. J Reconstr Microsurg 2015; 31 (4) 243-248
  • 8 Seniuk NA. Neurotrophic factors: role in peripheral neuron survival and axonal repair. J Reconstr Microsurg 1992; 8 (5) 399-404
  • 9 Tofaris GK, Patterson PH, Jessen KR, Mirsky R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci 2002; 22 (15) 6696-6703
  • 10 Lee HK, Wang L, Shin YK, Lee KY, Suh DJ, Park HT. Interleukin-6 induces proinflammatory signaling in Schwann cells: a high-throughput analysis. Biochem Biophys Res Commun 2009; 382 (2) 410-414
  • 11 Reichert F, Levitzky R, Rotshenker S. Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci 1996; 8 (3) 530-535
  • 12 Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374 (Pt 1) 1-20
  • 13 Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011; 1813 (5) 878-888
  • 14 Simpson RJ, Hammacher A, Smith DK, Matthews JM, Ward LD. Interleukin-6: structure-function relationships. Protein Sci 1997; 6 (5) 929-955
  • 15 Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science 2002; 296 (5573) 1653-1655
  • 16 Knüpfer H, Preiss R. sIL-6R: more than an agonist?. Immunol Cell Biol 2008; 86 (1) 87-91
  • 17 Peters M, Meyer zum Büschenfelde KH, Rose-John S. The function of the soluble IL-6 receptor in vivo. Immunol Lett 1996; 54 (2-3) 177-184
  • 18 Peters M, Müller AM, Rose-John S. Interleukin-6 and soluble interleukin-6 receptor: direct stimulation of gp130 and hematopoiesis. Blood 1998; 92 (10) 3495-3504
  • 19 Gaillard JP, Mani JC, Liautard J, Klein B, Brochier J. Interleukin-6 receptor signaling. I. gp80 and gp130 receptor interaction in the absence of interleukin-6. Eur Cytokine Netw 1999; 10 (1) 43-48
  • 20 Grötzinger J, Kernebeck T, Kallen KJ, Rose-John S. IL-6 type cytokine receptor complexes: hexamer, tetramer or both?. Biol Chem 1999; 380 (7-8) 803-813
  • 21 Modur V, Li Y, Zimmerman GA, Prescott SM, McIntyre TM. Retrograde inflammatory signaling from neutrophils to endothelial cells by soluble interleukin-6 receptor alpha. J Clin Invest 1997; 100 (11) 2752-2756
  • 22 Kiefer R, Lindholm D, Kreutzberg GW. Interleukin-6 and transforming growth factor-beta 1 mRNAs are induced in rat facial nucleus following motoneuron axotomy. Eur J Neurosci 1993; 5 (7) 775-781
  • 23 Bolin LM, Verity AN, Silver JE, Shooter EM, Abrams JS. Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem 1995; 64 (2) 850-858
  • 24 Lara-Ramírez R, Segura-Anaya E, Martínez-Gómez A, Dent MA. Expression of interleukin-6 receptor alpha in normal and injured rat sciatic nerve. Neuroscience 2008; 152 (3) 601-608
  • 25 Ito Y, Yamamoto M, Li M , et al. Differential temporal expression of mRNAs for ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), interleukin-6 (IL-6), and their receptors (CNTFR alpha, LIFR beta, IL-6R alpha and gp130) in injured peripheral nerves. Brain Res 1998; 793 (1-2) 321-327
  • 26 Bosse F. Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res 2012; 349 (1) 5-14
  • 27 Hirota H, Kiyama H, Kishimoto T, Taga T. Accelerated Nerve Regeneration in Mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J Exp Med 1996; 183 (6) 2627-2634
  • 28 Galiano M, Liu ZQ, Kalla R , et al. Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci 2001; 14 (2) 327-341
  • 29 Inserra MM, Yao M, Murray R, Terris DJ. Peripheral nerve regeneration in interleukin 6-deficient mice. Arch Otolaryngol Head Neck Surg 2000; 126 (9) 1112-1116
  • 30 Zhong J, Dietzel ID, Wahle P, Kopf M, Heumann R. Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. J Neurosci 1999; 19 (11) 4305-4313
  • 31 Li J, Yan JG, Ai X , et al. Ultrastructural analysis of peripheral-nerve regeneration within a nerve conduit. J Reconstr Microsurg 2004; 20 (7) 565-569
  • 32 Feng G, Mellor RH, Bernstein M , et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000; 28 (1) 41-51
  • 33 Witzel C, Rohde C, Brushart TM. Pathway sampling by regenerating peripheral axons. J Comp Neurol 2005; 485 (3) 183-190
  • 34 Kopf M, Baumann H, Freer G , et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 1994; 368 (6469) 339-342
  • 35 Shitara H, Sato A, Hayashi J, Mizushima N, Yonekawa H, Taya C. Simple method of zygosity identification in transgenic mice by real-time quantitative PCR. Transgenic Res 2004; 13 (2) 191-194
  • 36 Frey M, Koller R, Liegl C, Happak W, Gruber H. Role of a muscle target organ on the regeneration of motor nerve fibres in long nerve grafts: a synopsis of experimental and clinical data. Microsurgery 1996; 17 (2) 80-88
  • 37 Lundborg G, Dahlin L, Danielsen N, Zhao Q. Trophism, tropism, and specificity in nerve regeneration. J Reconstr Microsurg 1994; 10 (5) 345-354
  • 38 Tessier-Lavigne M, Placzek M. Target attraction: are developing axons guided by chemotropism?. Trends Neurosci 1991; 14 (7) 303-310
  • 39 Naugler WE, Karin M. The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 2008; 14 (3) 109-119
  • 40 Rohleder N, Aringer M, Boentert M. Role of interleukin-6 in stress, sleep, and fatigue. Ann N Y Acad Sci 2012; 1261: 88-96
  • 41 Müller-Newen G, Küster A, Hemmann U , et al. Soluble IL-6 receptor potentiates the antagonistic activity of soluble gp130 on IL-6 responses. J Immunol 1998; 161 (11) 6347-6355
  • 42 Su JL, Lai KP, Chen CA , et al. A novel peptide specifically binding to interleukin-6 receptor (gp80) inhibits angiogenesis and tumor growth. Cancer Res 2005; 65 (11) 4827-4835
  • 43 Schöbitz B, Voorhuis DA, De Kloet ER. Localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Neurosci Lett 1992; 136 (2) 189-192
  • 44 Kurek JB, Austin L, Cheema SS, Bartlett PF, Murphy M. Up-regulation of leukaemia inhibitory factor and interleukin-6 in transected sciatic nerve and muscle following denervation. Neuromuscul Disord 1996; 6 (2) 105-114
  • 45 Murphy PG, Grondin J, Altares M, Richardson PM. Induction of interleukin-6 in axotomized sensory neurons. J Neurosci 1995; 15 (7 Pt 2) 5130-5138
  • 46 Richardson PM, Miao T, Wu D, Zhang Y, Yeh J, Bo X. Responses of the nerve cell body to axotomy. Neurosurgery 2009; 65 (4, Suppl): A74-A79
  • 47 Brushart TM. Preferential motor reinnervation: a sequential double-labeling study. Restor Neurol Neurosci 1990; 1 (3) 281-287
  • 48 Brushart TM. Motor axons preferentially reinnervate motor pathways. J Neurosci 1993; 13 (6) 2730-2738
  • 49 Brown MC, Booth CM. Postnatal development of the adult pattern of motor axon distribution in rat muscle. Nature 1983; 304 (5928) 741-742
  • 50 Redfern PA. Neuromuscular transmission in new-born rats. J Physiol 1970; 209 (3) 701-709
  • 51 Stelzner DJ, Strauss JA. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?. J Comp Neurol 1986; 245 (1) 83-106
  • 52 Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol 2010; 22 (5) 347-352
  • 53 Tanaka T, Kishimoto T. Targeting interleukin-6: all the way to treat autoimmune and inflammatory diseases. Int J Biol Sci 2012; 8 (9) 1227-1236
  • 54 Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res 2014; 2 (4) 288-294