Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(23): 3805-3812
DOI: 10.1055/s-0035-1560347
DOI: 10.1055/s-0035-1560347
paper
Enantioselective Organocatalytic Michael Addition–Cyclization Cascade of Cyclopentane-1,2-dione with Substituted (E)-2-oxobut-3-enoates
Further Information
Publication History
Received: 27 June 2015
Accepted after revision: 28 August 2015
Publication Date:
01 October 2015 (online)
Abstract
An organocatalytic cascade Michael addition-cyclization reaction of cyclopentane-1,2-dione with substituted (E)-2-oxobut-3-enoates, creating two stereocenters and giving bicyclic hemiacetals 3 in excellent yield (up to 93%) and enantioselectivity (up to 96% ee) was developed. From 2-chlorophenyl-substituted (E)-2-oxobut-3-enoate, the adduct revealed pseudo-atropisomerism from the hindered rotation of the phenyl ring. The hemiacetal 3 was reduced with Et3SiH and Lewis acid affording substituted 1,2-cyclopentanedione 8, and disilylated with an excess of TMSOTf and Et3N to the dienol disilyl ether 9.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560347.
- Supporting Information
-
References
- 1a Rueping M, Merino E, Sugiono E. Adv. Synth. Catal. 2008; 350: 2127
- 1b Rueping M, Sugiono E, Merino E. Chem. Eur. J. 2008; 14: 6329
- 1c Franke PT, Richter B, Jørgensen KA. Chem. Eur. J. 2008; 14: 6317
- 2a Krishnakumar V, Mandal BK, Khan F.-RN, Jeong ED. Tetrahedron Lett. 2014; 55: 3717
- 2b Ren Q, Sun S, Huang J, Li W, Wu M, Guo H, Wang J. Chem. Commun. 2014; 50: 6137
- 2c Rao LC, Meshram HM, Kumar NS, Rao NN, Babu NJ. Tetrahedron Lett. 2014; 55: 1127
- 3 Nair DK, Menna-Barreto RF. S, Silva Junior EN, Mobin SM, Namboothiri NN. Chem. Commun. 2014; 50: 6973
- 4 Urbanietz G, Atodiresei I, Enders D. Synthesis 2014; 46: 1261
- 5 Moghaddam FM, Mirjafary Z, Javan MJ, Motamen S, Saeidian H. Tetrahedron Lett. 2014; 55: 2908
- 6 Zhao B.-L, Du D.-M. Tetrahedron: Asymmetry 2014; 25: 310
- 7 Rueping M, Kuenkel A, Tato F, Bats JW. Angew. Chem. Int. Ed. 2009; 48: 3699
- 8a Rueping M, Kuenkel A, Fröhlich R. Chem. Eur. J. 2010; 16: 4173
- 8b Ding D, Zhao C.-G, Guo Q, Arman H. Tetrahedron 2010; 66: 4423
- 8c Li W, Liu X, Mao Z, Chen Q, Wang R. Org. Biomol. Chem. 2012; 10: 4767
- 9 Ren Q, Gao Y, Wang J. Org. Biomol. Chem. 2011; 9: 5297
- 10a Lee JH, Kim DY. Bull. Korean Chem. Soc. 2013; 34: 1619
- 10b Song X, Liu J, Liu M.-M, Wang X, Zhang Z.-F, Wang M.-C, Chang J. Tetrahedron 2014; 70: 5468
- 10c Wang Y.-F, Wang K, Zhang W, Zhang B.-B, Zhang C.-X, Xu D.-Q. Eur. J. Org. Chem. 2012; 3691
- 10d Chen X.-K, Zheng C.-W, Zhao S.-L, Chai Z, Yang Y.-Q, Zhao G, Cao W.-G. Adv. Synth. Catal. 2010; 352: 1648
- 11 Preegel G, Noole A, Ilmarinen K, Järving I, Kanger T, Pehk T, Lopp M. Synthesis 2014; 46: 2595
- 12 Reile I, Paju A, Kanger T, Järving I, Lopp M. Tetrahedron Lett. 2012; 53: 1476
- 13 Desimoni G, Faita G, Quadrelli P. Chem. Rev. 2013; 113: 5924
- 14 Zhang Y, Liu X, Zhao X, Zhang J, Zhou L, Lin L, Feng X. Chem. Commun. 2013; 49: 11311
- 15 Suh CW, Han TH, Kim DY. Bull. Korean Chem. Soc. 2013; 34: 1623
- 16a Shen J, Liu D, An Q, Liu Y, Zhang W. Adv. Synth. Catal. 2012; 354: 3311
- 16b Shen J, An Q, Liu D, Liu Y, Zhang W. Chin. J. Chem. 2012; 30: 2681
- 17 Lin N, Deng Y.-Q, Zhang Z.-W, Wang Q, Lu G. Tetrahedron: Asymmetry 2014; 25: 650
- 18 Sinha D, Perera S, Zhao JC.-G. Chem. Eur. J. 2013; 19: 6976
- 19 Lv J, Zhong X, Cheng J.-P, Luo S. Acta Chim. Sinica 2012; 70: 1518
- 20 Murugan K, Srimurugan S, Chen C. Chem. Commun. 2010; 46: 1127
- 21 Janka M, He W, Haedicke IE, Fronczek FR, Frontier AJ, Eisenberg R. J. Am. Chem. Soc. 2006; 128: 5312
- 22a Ghosh AK. Patent WO2012/092168, 2012
- 22b Ghosh AK, Chapsal BD, Mitsuya D. Patent US2013/0289067, 2013
- 23a Chauhan P, Mahajan S, Kaya U, Hack D, Enders D. Adv. Synth. Catal. 2015; 357: 253
- 23b Li Y, Li X, Cheng J.-P. Adv. Synth. Catal. 2014; 356: 1172
- 23c Diaz-de-Villegas MD, Galvez JA, Badorrey R, Lopez-Ram-de-Viu P. Adv. Synth. Catal. 2014; 356: 3261
- 24a M. Ōki further refined the definition of atropisomers taking into account the temperature-dependence associated with the interconversion of conformers, specifying that atropisomers interconvert with a half-life of at least 1000 seconds at a given temperature, corresponding to an energy barrier of 93 kJ mol–1 (22 kcal mol–1) at 300 K (27 °C).
- 24b Oki M. Recent Advances in Atropisomerism, In Topics in Stereochemistry . Vol. 14. Allinger NL, Eliel EL, Wilen SH. Wiley; Hoboken: 1983: 1-82
- 25 Alkorta I, Elguero J, Roussel C, Vanthuyne N, Piras P. Adv. Heterocycl. Chem. 2012; 105: 1
- 26 Thompson M. ArgusLab 4.0.1 2004
- 27a Paju A, Kanger T, Pehk T, Lindmaa R, Müürisepp A.-M, Lopp M. Tetrahedron: Asymmetry 2003; 14: 1565
- 27b Paju A, Kanger T, Pehk T, Eek M, Lopp M. Tetrahedron 2004; 60: 9081
- 28 Wrobel J, Cook JM. Synth. Commun. 1980; 10: 333
-
29 Belmessieri D, Morrill LC, Simal C, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2011; 133: 2714
- 30 Feng J, Fu X, Chen Z, Lin L, Liu X, Feng X. Org. Lett. 2013; 15: 2640
- 31 Vakulya B, Varga S, Csámpai A, Soós T. Org. Lett. 2005; 7: 1967
- 32 Tomotaka O, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
- 33 Lee JW, Ryu TH, Oh JS, Bae HY, Jang HB, Song CE. Chem. Commun. 2009; 7224
- 34 D’Oyley JM, Aliev AE, Sheppard TD. Angew. Chem. Int. Ed. 2014; 53: 10747
- 35 Yamashita D, Murata Y, Hikage N, Takao K, Nakazaki A, Kobayashi S. Angew. Chem. Int. Ed. 2009; 48: 1404