Subscribe to RSS
DOI: 10.1055/s-0035-1560388
A Facile Route to Ursodeoxycholic Acid Based on Stereocontrolled Conversion and Aggregation Behavior Research
Publication History
Received: 03 September 2015
Accepted after revision: 13 November 2015
Publication Date:
15 December 2015 (online)
![](https://www.thieme-connect.de/media/synthesis/201604/lookinside/thumbnails/ss-2015-h0518-op_10-1055_s-0035-1560388-1.jpg)
Abstract
A facile route to ursodeoxycholic acid (UDCA) and its aggregation behavior in aqueous phase solution, which is rarely known, are reported. The starting material, hyodeoxycholic acid (HDCA), is a relatively less expensive material and more easily obtained compared with chenodeoxycholic acid (CDCA). A facile route was developed to synthesize UDCA from HDCA with a Shapiro reaction as the key step and in 26% overall yield. A new strategy using organosilane reagent considering its stability, nontoxicity, and abundance in nature was carried out for a more rapid route and higher yield. It was found that the critical micelle concentration value, which is a critical value for surfactants of bile salts, was influenced by the number of hydroxyl groups.
Key words
ursodeoxycholic acid - hyodeoxycholic acid - critical micelle concentration - facile route - Shapiro reaction - Clemmensen reactionSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560388.
- Supporting Information
-
References
- 1 Kritchevsky D. The Bile Acids - Chemistry, Physiology and Metabolism. Plenum Press; New York: 1971
- 2 Salen G, Colalillo A, Verga D, Bagan E, Tint GS, Shefer S. Gastroenterology 1980; 78: 1412
- 3 Crosignani A, Setchell KD, Invernizzi P, Larghi A, Rodrigues CM, Podda M. Clin. Pharmacokinet. 1996; 30: 333
- 4 Ren J, Wang YC, Wang JL, Lin J, Wei K, Huang R. Steroids 2013; 78: 53
- 5 Dosa PI, Ward T, Castro RE, Rodrigues CM, Steer CJ. ChemMedChem 2013; 8: 1002
- 6 Zheng MM, Wang RF, Li CX, Xu JH. Proc. Biochem. 2015; 50: 598
- 7 Eggert T, Bakonyi D, Hummel W. J. Biotechnol. 2014; 191: 11
- 8 Zhou WS, Wang ZQ, Jiang B. J. Chem. Soc., Perkin Trans. 1 1990; 1
- 9 Pedrini P, Andreotti E, Guerrini A, Dean M, Fantin G, Giovannini PP. Steroids 2006; 71: 189
- 10 Giovannini PP, Grandini A, Perrone D, Pedrini P, Fantin G, Fogagnolo M. Steroids 2008; 73: 1385
- 11 Medici A, Pedrini P, Bianchini E, Fantin G, Guerrini A, Natalini B, Pellicciari R. Steroids 2002; 67: 51
- 12 Hohenberg P, Kohn W. Phys. Rev. 1964; 136: 864
- 13 Levy M. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 6062
- 14 Sousa AM, Coutinho WS, Lima AF, Lalic MV. J. Chem. Phys. 2015; 142: 74703
- 15 Zhou QH, Li YX. J. Am. Chem. Soc. 2015; 137: 10182
- 16 Visitsatthawong S, Chenprakhon P, Chaiyen P, Surawatanawong P. J. Am. Chem. Soc. 2015; 137: 9363
- 17 Samrat M, Uday M. Org. Lett. 2004; 6: 31
- 18 Karamanis P, Pouchan C. J. Phys. Chem. C 2012; 116: 11808
- 19 Wang Y, Cheng LT. J. Phys. Chem. 1992; 96: 1530
- 20 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA. Gaussian 09, Revision A.1 . Gaussian, Inc; Pittsburgh: 2009
- 21 Wang Q, Zhao J, Wang XF. J. Phys. Chem. A 2015; 119: 2244
- 22 Dai YF, Li ZY, Yang JL. J. Phys. Chem. C 2014; 118: 3313
- 23 Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ. Nature 1994; 367: 630
- 24 Guillemette A, Francois A. German Patent DE2950481, 1980
- 25 Giordano C, Perdoncin G, Castaldi G. Angew. Chem. Int. Ed. 1985; 24: 499
- 26 Castaldi G, Perdoncin G, Giordano C, Minisci F. Tetrahedron Lett. 1983; 24: 2487